RockeyCoss
add code files”
51f6859
# Copyright (c) OpenMMLab. All rights reserved.
import sys
import warnings
import numpy as np
import torch
from mmdet.core import (bbox2roi, bbox_mapping, merge_aug_bboxes,
merge_aug_masks, multiclass_nms)
if sys.version_info >= (3, 7):
from mmdet.utils.contextmanagers import completed
class BBoxTestMixin:
if sys.version_info >= (3, 7):
async def async_test_bboxes(self,
x,
img_metas,
proposals,
rcnn_test_cfg,
rescale=False,
**kwargs):
"""Asynchronized test for box head without augmentation."""
rois = bbox2roi(proposals)
roi_feats = self.bbox_roi_extractor(
x[:len(self.bbox_roi_extractor.featmap_strides)], rois)
if self.with_shared_head:
roi_feats = self.shared_head(roi_feats)
sleep_interval = rcnn_test_cfg.get('async_sleep_interval', 0.017)
async with completed(
__name__, 'bbox_head_forward',
sleep_interval=sleep_interval):
cls_score, bbox_pred = self.bbox_head(roi_feats)
img_shape = img_metas[0]['img_shape']
scale_factor = img_metas[0]['scale_factor']
det_bboxes, det_labels = self.bbox_head.get_bboxes(
rois,
cls_score,
bbox_pred,
img_shape,
scale_factor,
rescale=rescale,
cfg=rcnn_test_cfg)
return det_bboxes, det_labels
def simple_test_bboxes(self,
x,
img_metas,
proposals,
rcnn_test_cfg,
rescale=False):
"""Test only det bboxes without augmentation.
Args:
x (tuple[Tensor]): Feature maps of all scale level.
img_metas (list[dict]): Image meta info.
proposals (List[Tensor]): Region proposals.
rcnn_test_cfg (obj:`ConfigDict`): `test_cfg` of R-CNN.
rescale (bool): If True, return boxes in original image space.
Default: False.
Returns:
tuple[list[Tensor], list[Tensor]]: The first list contains
the boxes of the corresponding image in a batch, each
tensor has the shape (num_boxes, 5) and last dimension
5 represent (tl_x, tl_y, br_x, br_y, score). Each Tensor
in the second list is the labels with shape (num_boxes, ).
The length of both lists should be equal to batch_size.
"""
rois = bbox2roi(proposals)
if rois.shape[0] == 0:
batch_size = len(proposals)
det_bbox = rois.new_zeros(0, 5)
det_label = rois.new_zeros((0, ), dtype=torch.long)
if rcnn_test_cfg is None:
det_bbox = det_bbox[:, :4]
det_label = rois.new_zeros(
(0, self.bbox_head.fc_cls.out_features))
# There is no proposal in the whole batch
return [det_bbox] * batch_size, [det_label] * batch_size
bbox_results = self._bbox_forward(x, rois)
img_shapes = tuple(meta['img_shape'] for meta in img_metas)
scale_factors = tuple(meta['scale_factor'] for meta in img_metas)
# split batch bbox prediction back to each image
cls_score = bbox_results['cls_score']
bbox_pred = bbox_results['bbox_pred']
num_proposals_per_img = tuple(len(p) for p in proposals)
rois = rois.split(num_proposals_per_img, 0)
cls_score = cls_score.split(num_proposals_per_img, 0)
# some detector with_reg is False, bbox_pred will be None
if bbox_pred is not None:
# TODO move this to a sabl_roi_head
# the bbox prediction of some detectors like SABL is not Tensor
if isinstance(bbox_pred, torch.Tensor):
bbox_pred = bbox_pred.split(num_proposals_per_img, 0)
else:
bbox_pred = self.bbox_head.bbox_pred_split(
bbox_pred, num_proposals_per_img)
else:
bbox_pred = (None, ) * len(proposals)
# apply bbox post-processing to each image individually
det_bboxes = []
det_labels = []
for i in range(len(proposals)):
if rois[i].shape[0] == 0:
# There is no proposal in the single image
det_bbox = rois[i].new_zeros(0, 5)
det_label = rois[i].new_zeros((0, ), dtype=torch.long)
if rcnn_test_cfg is None:
det_bbox = det_bbox[:, :4]
det_label = rois[i].new_zeros(
(0, self.bbox_head.fc_cls.out_features))
else:
det_bbox, det_label = self.bbox_head.get_bboxes(
rois[i],
cls_score[i],
bbox_pred[i],
img_shapes[i],
scale_factors[i],
rescale=rescale,
cfg=rcnn_test_cfg)
det_bboxes.append(det_bbox)
det_labels.append(det_label)
return det_bboxes, det_labels
def aug_test_bboxes(self, feats, img_metas, proposal_list, rcnn_test_cfg):
"""Test det bboxes with test time augmentation."""
aug_bboxes = []
aug_scores = []
for x, img_meta in zip(feats, img_metas):
# only one image in the batch
img_shape = img_meta[0]['img_shape']
scale_factor = img_meta[0]['scale_factor']
flip = img_meta[0]['flip']
flip_direction = img_meta[0]['flip_direction']
# TODO more flexible
proposals = bbox_mapping(proposal_list[0][:, :4], img_shape,
scale_factor, flip, flip_direction)
rois = bbox2roi([proposals])
bbox_results = self._bbox_forward(x, rois)
bboxes, scores = self.bbox_head.get_bboxes(
rois,
bbox_results['cls_score'],
bbox_results['bbox_pred'],
img_shape,
scale_factor,
rescale=False,
cfg=None)
aug_bboxes.append(bboxes)
aug_scores.append(scores)
# after merging, bboxes will be rescaled to the original image size
merged_bboxes, merged_scores = merge_aug_bboxes(
aug_bboxes, aug_scores, img_metas, rcnn_test_cfg)
if merged_bboxes.shape[0] == 0:
# There is no proposal in the single image
det_bboxes = merged_bboxes.new_zeros(0, 5)
det_labels = merged_bboxes.new_zeros((0, ), dtype=torch.long)
else:
det_bboxes, det_labels = multiclass_nms(merged_bboxes,
merged_scores,
rcnn_test_cfg.score_thr,
rcnn_test_cfg.nms,
rcnn_test_cfg.max_per_img)
return det_bboxes, det_labels
class MaskTestMixin:
if sys.version_info >= (3, 7):
async def async_test_mask(self,
x,
img_metas,
det_bboxes,
det_labels,
rescale=False,
mask_test_cfg=None):
"""Asynchronized test for mask head without augmentation."""
# image shape of the first image in the batch (only one)
ori_shape = img_metas[0]['ori_shape']
scale_factor = img_metas[0]['scale_factor']
if det_bboxes.shape[0] == 0:
segm_result = [[] for _ in range(self.mask_head.num_classes)]
else:
if rescale and not isinstance(scale_factor,
(float, torch.Tensor)):
scale_factor = det_bboxes.new_tensor(scale_factor)
_bboxes = (
det_bboxes[:, :4] *
scale_factor if rescale else det_bboxes)
mask_rois = bbox2roi([_bboxes])
mask_feats = self.mask_roi_extractor(
x[:len(self.mask_roi_extractor.featmap_strides)],
mask_rois)
if self.with_shared_head:
mask_feats = self.shared_head(mask_feats)
if mask_test_cfg and mask_test_cfg.get('async_sleep_interval'):
sleep_interval = mask_test_cfg['async_sleep_interval']
else:
sleep_interval = 0.035
async with completed(
__name__,
'mask_head_forward',
sleep_interval=sleep_interval):
mask_pred = self.mask_head(mask_feats)
segm_result = self.mask_head.get_seg_masks(
mask_pred, _bboxes, det_labels, self.test_cfg, ori_shape,
scale_factor, rescale)
return segm_result
def simple_test_mask(self,
x,
img_metas,
det_bboxes,
det_labels,
rescale=False):
"""Simple test for mask head without augmentation."""
# image shapes of images in the batch
ori_shapes = tuple(meta['ori_shape'] for meta in img_metas)
scale_factors = tuple(meta['scale_factor'] for meta in img_metas)
if isinstance(scale_factors[0], float):
warnings.warn(
'Scale factor in img_metas should be a '
'ndarray with shape (4,) '
'arrange as (factor_w, factor_h, factor_w, factor_h), '
'The scale_factor with float type has been deprecated. ')
scale_factors = np.array([scale_factors] * 4, dtype=np.float32)
num_imgs = len(det_bboxes)
if all(det_bbox.shape[0] == 0 for det_bbox in det_bboxes):
segm_results = [[[] for _ in range(self.mask_head.num_classes)]
for _ in range(num_imgs)]
else:
# if det_bboxes is rescaled to the original image size, we need to
# rescale it back to the testing scale to obtain RoIs.
if rescale:
scale_factors = [
torch.from_numpy(scale_factor).to(det_bboxes[0].device)
for scale_factor in scale_factors
]
_bboxes = [
det_bboxes[i][:, :4] *
scale_factors[i] if rescale else det_bboxes[i][:, :4]
for i in range(len(det_bboxes))
]
mask_rois = bbox2roi(_bboxes)
mask_results = self._mask_forward(x, mask_rois)
mask_pred = mask_results['mask_pred']
# split batch mask prediction back to each image
num_mask_roi_per_img = [len(det_bbox) for det_bbox in det_bboxes]
mask_preds = mask_pred.split(num_mask_roi_per_img, 0)
# apply mask post-processing to each image individually
segm_results = []
for i in range(num_imgs):
if det_bboxes[i].shape[0] == 0:
segm_results.append(
[[] for _ in range(self.mask_head.num_classes)])
else:
segm_result = self.mask_head.get_seg_masks(
mask_preds[i], _bboxes[i], det_labels[i],
self.test_cfg, ori_shapes[i], scale_factors[i],
rescale)
segm_results.append(segm_result)
return segm_results
def aug_test_mask(self, feats, img_metas, det_bboxes, det_labels):
"""Test for mask head with test time augmentation."""
if det_bboxes.shape[0] == 0:
segm_result = [[] for _ in range(self.mask_head.num_classes)]
else:
aug_masks = []
for x, img_meta in zip(feats, img_metas):
img_shape = img_meta[0]['img_shape']
scale_factor = img_meta[0]['scale_factor']
flip = img_meta[0]['flip']
flip_direction = img_meta[0]['flip_direction']
_bboxes = bbox_mapping(det_bboxes[:, :4], img_shape,
scale_factor, flip, flip_direction)
mask_rois = bbox2roi([_bboxes])
mask_results = self._mask_forward(x, mask_rois)
# convert to numpy array to save memory
aug_masks.append(
mask_results['mask_pred'].sigmoid().cpu().numpy())
merged_masks = merge_aug_masks(aug_masks, img_metas, self.test_cfg)
ori_shape = img_metas[0][0]['ori_shape']
scale_factor = det_bboxes.new_ones(4)
segm_result = self.mask_head.get_seg_masks(
merged_masks,
det_bboxes,
det_labels,
self.test_cfg,
ori_shape,
scale_factor=scale_factor,
rescale=False)
return segm_result