Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import math | |
import warnings | |
from typing import Sequence | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from mmcv.cnn import (build_activation_layer, build_conv_layer, | |
build_norm_layer, xavier_init) | |
from mmcv.cnn.bricks.registry import (TRANSFORMER_LAYER, | |
TRANSFORMER_LAYER_SEQUENCE) | |
from mmcv.cnn.bricks.transformer import (BaseTransformerLayer, | |
TransformerLayerSequence, | |
build_transformer_layer_sequence) | |
from mmcv.runner.base_module import BaseModule | |
from mmcv.utils import to_2tuple | |
from torch.nn.init import normal_ | |
from mmdet.models.utils.builder import TRANSFORMER | |
try: | |
from mmcv.ops.multi_scale_deform_attn import MultiScaleDeformableAttention | |
except ImportError: | |
warnings.warn( | |
'`MultiScaleDeformableAttention` in MMCV has been moved to ' | |
'`mmcv.ops.multi_scale_deform_attn`, please update your MMCV') | |
from mmcv.cnn.bricks.transformer import MultiScaleDeformableAttention | |
def nlc_to_nchw(x, hw_shape): | |
"""Convert [N, L, C] shape tensor to [N, C, H, W] shape tensor. | |
Args: | |
x (Tensor): The input tensor of shape [N, L, C] before conversion. | |
hw_shape (Sequence[int]): The height and width of output feature map. | |
Returns: | |
Tensor: The output tensor of shape [N, C, H, W] after conversion. | |
""" | |
H, W = hw_shape | |
assert len(x.shape) == 3 | |
B, L, C = x.shape | |
assert L == H * W, 'The seq_len does not match H, W' | |
return x.transpose(1, 2).reshape(B, C, H, W).contiguous() | |
def nchw_to_nlc(x): | |
"""Flatten [N, C, H, W] shape tensor to [N, L, C] shape tensor. | |
Args: | |
x (Tensor): The input tensor of shape [N, C, H, W] before conversion. | |
Returns: | |
Tensor: The output tensor of shape [N, L, C] after conversion. | |
""" | |
assert len(x.shape) == 4 | |
return x.flatten(2).transpose(1, 2).contiguous() | |
class AdaptivePadding(nn.Module): | |
"""Applies padding to input (if needed) so that input can get fully covered | |
by filter you specified. It support two modes "same" and "corner". The | |
"same" mode is same with "SAME" padding mode in TensorFlow, pad zero around | |
input. The "corner" mode would pad zero to bottom right. | |
Args: | |
kernel_size (int | tuple): Size of the kernel: | |
stride (int | tuple): Stride of the filter. Default: 1: | |
dilation (int | tuple): Spacing between kernel elements. | |
Default: 1 | |
padding (str): Support "same" and "corner", "corner" mode | |
would pad zero to bottom right, and "same" mode would | |
pad zero around input. Default: "corner". | |
Example: | |
>>> kernel_size = 16 | |
>>> stride = 16 | |
>>> dilation = 1 | |
>>> input = torch.rand(1, 1, 15, 17) | |
>>> adap_pad = AdaptivePadding( | |
>>> kernel_size=kernel_size, | |
>>> stride=stride, | |
>>> dilation=dilation, | |
>>> padding="corner") | |
>>> out = adap_pad(input) | |
>>> assert (out.shape[2], out.shape[3]) == (16, 32) | |
>>> input = torch.rand(1, 1, 16, 17) | |
>>> out = adap_pad(input) | |
>>> assert (out.shape[2], out.shape[3]) == (16, 32) | |
""" | |
def __init__(self, kernel_size=1, stride=1, dilation=1, padding='corner'): | |
super(AdaptivePadding, self).__init__() | |
assert padding in ('same', 'corner') | |
kernel_size = to_2tuple(kernel_size) | |
stride = to_2tuple(stride) | |
padding = to_2tuple(padding) | |
dilation = to_2tuple(dilation) | |
self.padding = padding | |
self.kernel_size = kernel_size | |
self.stride = stride | |
self.dilation = dilation | |
def get_pad_shape(self, input_shape): | |
input_h, input_w = input_shape | |
kernel_h, kernel_w = self.kernel_size | |
stride_h, stride_w = self.stride | |
output_h = math.ceil(input_h / stride_h) | |
output_w = math.ceil(input_w / stride_w) | |
pad_h = max((output_h - 1) * stride_h + | |
(kernel_h - 1) * self.dilation[0] + 1 - input_h, 0) | |
pad_w = max((output_w - 1) * stride_w + | |
(kernel_w - 1) * self.dilation[1] + 1 - input_w, 0) | |
return pad_h, pad_w | |
def forward(self, x): | |
pad_h, pad_w = self.get_pad_shape(x.size()[-2:]) | |
if pad_h > 0 or pad_w > 0: | |
if self.padding == 'corner': | |
x = F.pad(x, [0, pad_w, 0, pad_h]) | |
elif self.padding == 'same': | |
x = F.pad(x, [ | |
pad_w // 2, pad_w - pad_w // 2, pad_h // 2, | |
pad_h - pad_h // 2 | |
]) | |
return x | |
class PatchEmbed(BaseModule): | |
"""Image to Patch Embedding. | |
We use a conv layer to implement PatchEmbed. | |
Args: | |
in_channels (int): The num of input channels. Default: 3 | |
embed_dims (int): The dimensions of embedding. Default: 768 | |
conv_type (str): The config dict for embedding | |
conv layer type selection. Default: "Conv2d. | |
kernel_size (int): The kernel_size of embedding conv. Default: 16. | |
stride (int): The slide stride of embedding conv. | |
Default: None (Would be set as `kernel_size`). | |
padding (int | tuple | string ): The padding length of | |
embedding conv. When it is a string, it means the mode | |
of adaptive padding, support "same" and "corner" now. | |
Default: "corner". | |
dilation (int): The dilation rate of embedding conv. Default: 1. | |
bias (bool): Bias of embed conv. Default: True. | |
norm_cfg (dict, optional): Config dict for normalization layer. | |
Default: None. | |
input_size (int | tuple | None): The size of input, which will be | |
used to calculate the out size. Only work when `dynamic_size` | |
is False. Default: None. | |
init_cfg (`mmcv.ConfigDict`, optional): The Config for initialization. | |
Default: None. | |
""" | |
def __init__( | |
self, | |
in_channels=3, | |
embed_dims=768, | |
conv_type='Conv2d', | |
kernel_size=16, | |
stride=16, | |
padding='corner', | |
dilation=1, | |
bias=True, | |
norm_cfg=None, | |
input_size=None, | |
init_cfg=None, | |
): | |
super(PatchEmbed, self).__init__(init_cfg=init_cfg) | |
self.embed_dims = embed_dims | |
if stride is None: | |
stride = kernel_size | |
kernel_size = to_2tuple(kernel_size) | |
stride = to_2tuple(stride) | |
dilation = to_2tuple(dilation) | |
if isinstance(padding, str): | |
self.adap_padding = AdaptivePadding( | |
kernel_size=kernel_size, | |
stride=stride, | |
dilation=dilation, | |
padding=padding) | |
# disable the padding of conv | |
padding = 0 | |
else: | |
self.adap_padding = None | |
padding = to_2tuple(padding) | |
self.projection = build_conv_layer( | |
dict(type=conv_type), | |
in_channels=in_channels, | |
out_channels=embed_dims, | |
kernel_size=kernel_size, | |
stride=stride, | |
padding=padding, | |
dilation=dilation, | |
bias=bias) | |
if norm_cfg is not None: | |
self.norm = build_norm_layer(norm_cfg, embed_dims)[1] | |
else: | |
self.norm = None | |
if input_size: | |
input_size = to_2tuple(input_size) | |
# `init_out_size` would be used outside to | |
# calculate the num_patches | |
# when `use_abs_pos_embed` outside | |
self.init_input_size = input_size | |
if self.adap_padding: | |
pad_h, pad_w = self.adap_padding.get_pad_shape(input_size) | |
input_h, input_w = input_size | |
input_h = input_h + pad_h | |
input_w = input_w + pad_w | |
input_size = (input_h, input_w) | |
# https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html | |
h_out = (input_size[0] + 2 * padding[0] - dilation[0] * | |
(kernel_size[0] - 1) - 1) // stride[0] + 1 | |
w_out = (input_size[1] + 2 * padding[1] - dilation[1] * | |
(kernel_size[1] - 1) - 1) // stride[1] + 1 | |
self.init_out_size = (h_out, w_out) | |
else: | |
self.init_input_size = None | |
self.init_out_size = None | |
def forward(self, x): | |
""" | |
Args: | |
x (Tensor): Has shape (B, C, H, W). In most case, C is 3. | |
Returns: | |
tuple: Contains merged results and its spatial shape. | |
- x (Tensor): Has shape (B, out_h * out_w, embed_dims) | |
- out_size (tuple[int]): Spatial shape of x, arrange as | |
(out_h, out_w). | |
""" | |
if self.adap_padding: | |
x = self.adap_padding(x) | |
x = self.projection(x) | |
out_size = (x.shape[2], x.shape[3]) | |
x = x.flatten(2).transpose(1, 2) | |
if self.norm is not None: | |
x = self.norm(x) | |
return x, out_size | |
class PatchMerging(BaseModule): | |
"""Merge patch feature map. | |
This layer groups feature map by kernel_size, and applies norm and linear | |
layers to the grouped feature map. Our implementation uses `nn.Unfold` to | |
merge patch, which is about 25% faster than original implementation. | |
Instead, we need to modify pretrained models for compatibility. | |
Args: | |
in_channels (int): The num of input channels. | |
to gets fully covered by filter and stride you specified.. | |
Default: True. | |
out_channels (int): The num of output channels. | |
kernel_size (int | tuple, optional): the kernel size in the unfold | |
layer. Defaults to 2. | |
stride (int | tuple, optional): the stride of the sliding blocks in the | |
unfold layer. Default: None. (Would be set as `kernel_size`) | |
padding (int | tuple | string ): The padding length of | |
embedding conv. When it is a string, it means the mode | |
of adaptive padding, support "same" and "corner" now. | |
Default: "corner". | |
dilation (int | tuple, optional): dilation parameter in the unfold | |
layer. Default: 1. | |
bias (bool, optional): Whether to add bias in linear layer or not. | |
Defaults: False. | |
norm_cfg (dict, optional): Config dict for normalization layer. | |
Default: dict(type='LN'). | |
init_cfg (dict, optional): The extra config for initialization. | |
Default: None. | |
""" | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size=2, | |
stride=None, | |
padding='corner', | |
dilation=1, | |
bias=False, | |
norm_cfg=dict(type='LN'), | |
init_cfg=None): | |
super().__init__(init_cfg=init_cfg) | |
self.in_channels = in_channels | |
self.out_channels = out_channels | |
if stride: | |
stride = stride | |
else: | |
stride = kernel_size | |
kernel_size = to_2tuple(kernel_size) | |
stride = to_2tuple(stride) | |
dilation = to_2tuple(dilation) | |
if isinstance(padding, str): | |
self.adap_padding = AdaptivePadding( | |
kernel_size=kernel_size, | |
stride=stride, | |
dilation=dilation, | |
padding=padding) | |
# disable the padding of unfold | |
padding = 0 | |
else: | |
self.adap_padding = None | |
padding = to_2tuple(padding) | |
self.sampler = nn.Unfold( | |
kernel_size=kernel_size, | |
dilation=dilation, | |
padding=padding, | |
stride=stride) | |
sample_dim = kernel_size[0] * kernel_size[1] * in_channels | |
if norm_cfg is not None: | |
self.norm = build_norm_layer(norm_cfg, sample_dim)[1] | |
else: | |
self.norm = None | |
self.reduction = nn.Linear(sample_dim, out_channels, bias=bias) | |
def forward(self, x, input_size): | |
""" | |
Args: | |
x (Tensor): Has shape (B, H*W, C_in). | |
input_size (tuple[int]): The spatial shape of x, arrange as (H, W). | |
Default: None. | |
Returns: | |
tuple: Contains merged results and its spatial shape. | |
- x (Tensor): Has shape (B, Merged_H * Merged_W, C_out) | |
- out_size (tuple[int]): Spatial shape of x, arrange as | |
(Merged_H, Merged_W). | |
""" | |
B, L, C = x.shape | |
assert isinstance(input_size, Sequence), f'Expect ' \ | |
f'input_size is ' \ | |
f'`Sequence` ' \ | |
f'but get {input_size}' | |
H, W = input_size | |
assert L == H * W, 'input feature has wrong size' | |
x = x.view(B, H, W, C).permute([0, 3, 1, 2]) # B, C, H, W | |
# Use nn.Unfold to merge patch. About 25% faster than original method, | |
# but need to modify pretrained model for compatibility | |
if self.adap_padding: | |
x = self.adap_padding(x) | |
H, W = x.shape[-2:] | |
x = self.sampler(x) | |
# if kernel_size=2 and stride=2, x should has shape (B, 4*C, H/2*W/2) | |
out_h = (H + 2 * self.sampler.padding[0] - self.sampler.dilation[0] * | |
(self.sampler.kernel_size[0] - 1) - | |
1) // self.sampler.stride[0] + 1 | |
out_w = (W + 2 * self.sampler.padding[1] - self.sampler.dilation[1] * | |
(self.sampler.kernel_size[1] - 1) - | |
1) // self.sampler.stride[1] + 1 | |
output_size = (out_h, out_w) | |
x = x.transpose(1, 2) # B, H/2*W/2, 4*C | |
x = self.norm(x) if self.norm else x | |
x = self.reduction(x) | |
return x, output_size | |
def inverse_sigmoid(x, eps=1e-5): | |
"""Inverse function of sigmoid. | |
Args: | |
x (Tensor): The tensor to do the | |
inverse. | |
eps (float): EPS avoid numerical | |
overflow. Defaults 1e-5. | |
Returns: | |
Tensor: The x has passed the inverse | |
function of sigmoid, has same | |
shape with input. | |
""" | |
x = x.clamp(min=0, max=1) | |
x1 = x.clamp(min=eps) | |
x2 = (1 - x).clamp(min=eps) | |
return torch.log(x1 / x2) | |
class DetrTransformerDecoderLayer(BaseTransformerLayer): | |
"""Implements decoder layer in DETR transformer. | |
Args: | |
attn_cfgs (list[`mmcv.ConfigDict`] | list[dict] | dict )): | |
Configs for self_attention or cross_attention, the order | |
should be consistent with it in `operation_order`. If it is | |
a dict, it would be expand to the number of attention in | |
`operation_order`. | |
feedforward_channels (int): The hidden dimension for FFNs. | |
ffn_dropout (float): Probability of an element to be zeroed | |
in ffn. Default 0.0. | |
operation_order (tuple[str]): The execution order of operation | |
in transformer. Such as ('self_attn', 'norm', 'ffn', 'norm'). | |
Default:None | |
act_cfg (dict): The activation config for FFNs. Default: `LN` | |
norm_cfg (dict): Config dict for normalization layer. | |
Default: `LN`. | |
ffn_num_fcs (int): The number of fully-connected layers in FFNs. | |
Default:2. | |
""" | |
def __init__(self, | |
attn_cfgs, | |
feedforward_channels, | |
ffn_dropout=0.0, | |
operation_order=None, | |
act_cfg=dict(type='ReLU', inplace=True), | |
norm_cfg=dict(type='LN'), | |
ffn_num_fcs=2, | |
**kwargs): | |
super(DetrTransformerDecoderLayer, self).__init__( | |
attn_cfgs=attn_cfgs, | |
feedforward_channels=feedforward_channels, | |
ffn_dropout=ffn_dropout, | |
operation_order=operation_order, | |
act_cfg=act_cfg, | |
norm_cfg=norm_cfg, | |
ffn_num_fcs=ffn_num_fcs, | |
**kwargs) | |
assert len(operation_order) == 6 | |
assert set(operation_order) == set( | |
['self_attn', 'norm', 'cross_attn', 'ffn']) | |
class DetrTransformerEncoder(TransformerLayerSequence): | |
"""TransformerEncoder of DETR. | |
Args: | |
post_norm_cfg (dict): Config of last normalization layer. Default: | |
`LN`. Only used when `self.pre_norm` is `True` | |
""" | |
def __init__(self, *args, post_norm_cfg=dict(type='LN'), **kwargs): | |
super(DetrTransformerEncoder, self).__init__(*args, **kwargs) | |
if post_norm_cfg is not None: | |
self.post_norm = build_norm_layer( | |
post_norm_cfg, self.embed_dims)[1] if self.pre_norm else None | |
else: | |
assert not self.pre_norm, f'Use prenorm in ' \ | |
f'{self.__class__.__name__},' \ | |
f'Please specify post_norm_cfg' | |
self.post_norm = None | |
def forward(self, *args, **kwargs): | |
"""Forward function for `TransformerCoder`. | |
Returns: | |
Tensor: forwarded results with shape [num_query, bs, embed_dims]. | |
""" | |
x = super(DetrTransformerEncoder, self).forward(*args, **kwargs) | |
if self.post_norm is not None: | |
x = self.post_norm(x) | |
return x | |
class DetrTransformerDecoder(TransformerLayerSequence): | |
"""Implements the decoder in DETR transformer. | |
Args: | |
return_intermediate (bool): Whether to return intermediate outputs. | |
post_norm_cfg (dict): Config of last normalization layer. Default: | |
`LN`. | |
""" | |
def __init__(self, | |
*args, | |
post_norm_cfg=dict(type='LN'), | |
return_intermediate=False, | |
**kwargs): | |
super(DetrTransformerDecoder, self).__init__(*args, **kwargs) | |
self.return_intermediate = return_intermediate | |
if post_norm_cfg is not None: | |
self.post_norm = build_norm_layer(post_norm_cfg, | |
self.embed_dims)[1] | |
else: | |
self.post_norm = None | |
def forward(self, query, *args, **kwargs): | |
"""Forward function for `TransformerDecoder`. | |
Args: | |
query (Tensor): Input query with shape | |
`(num_query, bs, embed_dims)`. | |
Returns: | |
Tensor: Results with shape [1, num_query, bs, embed_dims] when | |
return_intermediate is `False`, otherwise it has shape | |
[num_layers, num_query, bs, embed_dims]. | |
""" | |
if not self.return_intermediate: | |
x = super().forward(query, *args, **kwargs) | |
if self.post_norm: | |
x = self.post_norm(x)[None] | |
return x | |
intermediate = [] | |
for layer in self.layers: | |
query = layer(query, *args, **kwargs) | |
if self.return_intermediate: | |
if self.post_norm is not None: | |
intermediate.append(self.post_norm(query)) | |
else: | |
intermediate.append(query) | |
return torch.stack(intermediate) | |
class Transformer(BaseModule): | |
"""Implements the DETR transformer. | |
Following the official DETR implementation, this module copy-paste | |
from torch.nn.Transformer with modifications: | |
* positional encodings are passed in MultiheadAttention | |
* extra LN at the end of encoder is removed | |
* decoder returns a stack of activations from all decoding layers | |
See `paper: End-to-End Object Detection with Transformers | |
<https://arxiv.org/pdf/2005.12872>`_ for details. | |
Args: | |
encoder (`mmcv.ConfigDict` | Dict): Config of | |
TransformerEncoder. Defaults to None. | |
decoder ((`mmcv.ConfigDict` | Dict)): Config of | |
TransformerDecoder. Defaults to None | |
init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization. | |
Defaults to None. | |
""" | |
def __init__(self, encoder=None, decoder=None, init_cfg=None): | |
super(Transformer, self).__init__(init_cfg=init_cfg) | |
self.encoder = build_transformer_layer_sequence(encoder) | |
self.decoder = build_transformer_layer_sequence(decoder) | |
self.embed_dims = self.encoder.embed_dims | |
def init_weights(self): | |
# follow the official DETR to init parameters | |
for m in self.modules(): | |
if hasattr(m, 'weight') and m.weight.dim() > 1: | |
xavier_init(m, distribution='uniform') | |
self._is_init = True | |
def forward(self, x, mask, query_embed, pos_embed): | |
"""Forward function for `Transformer`. | |
Args: | |
x (Tensor): Input query with shape [bs, c, h, w] where | |
c = embed_dims. | |
mask (Tensor): The key_padding_mask used for encoder and decoder, | |
with shape [bs, h, w]. | |
query_embed (Tensor): The query embedding for decoder, with shape | |
[num_query, c]. | |
pos_embed (Tensor): The positional encoding for encoder and | |
decoder, with the same shape as `x`. | |
Returns: | |
tuple[Tensor]: results of decoder containing the following tensor. | |
- out_dec: Output from decoder. If return_intermediate_dec \ | |
is True output has shape [num_dec_layers, bs, | |
num_query, embed_dims], else has shape [1, bs, \ | |
num_query, embed_dims]. | |
- memory: Output results from encoder, with shape \ | |
[bs, embed_dims, h, w]. | |
""" | |
bs, c, h, w = x.shape | |
# use `view` instead of `flatten` for dynamically exporting to ONNX | |
x = x.view(bs, c, -1).permute(2, 0, 1) # [bs, c, h, w] -> [h*w, bs, c] | |
pos_embed = pos_embed.view(bs, c, -1).permute(2, 0, 1) | |
query_embed = query_embed.unsqueeze(1).repeat( | |
1, bs, 1) # [num_query, dim] -> [num_query, bs, dim] | |
mask = mask.view(bs, -1) # [bs, h, w] -> [bs, h*w] | |
memory = self.encoder( | |
query=x, | |
key=None, | |
value=None, | |
query_pos=pos_embed, | |
query_key_padding_mask=mask) | |
target = torch.zeros_like(query_embed) | |
# out_dec: [num_layers, num_query, bs, dim] | |
out_dec = self.decoder( | |
query=target, | |
key=memory, | |
value=memory, | |
key_pos=pos_embed, | |
query_pos=query_embed, | |
key_padding_mask=mask) | |
out_dec = out_dec.transpose(1, 2) | |
memory = memory.permute(1, 2, 0).reshape(bs, c, h, w) | |
return out_dec, memory | |
class DeformableDetrTransformerDecoder(TransformerLayerSequence): | |
"""Implements the decoder in DETR transformer. | |
Args: | |
return_intermediate (bool): Whether to return intermediate outputs. | |
coder_norm_cfg (dict): Config of last normalization layer. Default: | |
`LN`. | |
""" | |
def __init__(self, *args, return_intermediate=False, **kwargs): | |
super(DeformableDetrTransformerDecoder, self).__init__(*args, **kwargs) | |
self.return_intermediate = return_intermediate | |
def forward(self, | |
query, | |
*args, | |
reference_points=None, | |
valid_ratios=None, | |
reg_branches=None, | |
**kwargs): | |
"""Forward function for `TransformerDecoder`. | |
Args: | |
query (Tensor): Input query with shape | |
`(num_query, bs, embed_dims)`. | |
reference_points (Tensor): The reference | |
points of offset. has shape | |
(bs, num_query, 4) when as_two_stage, | |
otherwise has shape ((bs, num_query, 2). | |
valid_ratios (Tensor): The radios of valid | |
points on the feature map, has shape | |
(bs, num_levels, 2) | |
reg_branch: (obj:`nn.ModuleList`): Used for | |
refining the regression results. Only would | |
be passed when with_box_refine is True, | |
otherwise would be passed a `None`. | |
Returns: | |
Tensor: Results with shape [1, num_query, bs, embed_dims] when | |
return_intermediate is `False`, otherwise it has shape | |
[num_layers, num_query, bs, embed_dims]. | |
""" | |
output = query | |
intermediate = [] | |
intermediate_reference_points = [] | |
for lid, layer in enumerate(self.layers): | |
if reference_points.shape[-1] == 4: | |
reference_points_input = reference_points[:, :, None] * \ | |
torch.cat([valid_ratios, valid_ratios], -1)[:, None] | |
else: | |
assert reference_points.shape[-1] == 2 | |
reference_points_input = reference_points[:, :, None] * \ | |
valid_ratios[:, None] | |
output = layer( | |
output, | |
*args, | |
reference_points=reference_points_input, | |
**kwargs) | |
output = output.permute(1, 0, 2) | |
if reg_branches is not None: | |
tmp = reg_branches[lid](output) | |
if reference_points.shape[-1] == 4: | |
new_reference_points = tmp + inverse_sigmoid( | |
reference_points) | |
new_reference_points = new_reference_points.sigmoid() | |
else: | |
assert reference_points.shape[-1] == 2 | |
new_reference_points = tmp | |
new_reference_points[..., :2] = tmp[ | |
..., :2] + inverse_sigmoid(reference_points) | |
new_reference_points = new_reference_points.sigmoid() | |
reference_points = new_reference_points.detach() | |
output = output.permute(1, 0, 2) | |
if self.return_intermediate: | |
intermediate.append(output) | |
intermediate_reference_points.append(reference_points) | |
if self.return_intermediate: | |
return torch.stack(intermediate), torch.stack( | |
intermediate_reference_points) | |
return output, reference_points | |
class DeformableDetrTransformer(Transformer): | |
"""Implements the DeformableDETR transformer. | |
Args: | |
as_two_stage (bool): Generate query from encoder features. | |
Default: False. | |
num_feature_levels (int): Number of feature maps from FPN: | |
Default: 4. | |
two_stage_num_proposals (int): Number of proposals when set | |
`as_two_stage` as True. Default: 300. | |
""" | |
def __init__(self, | |
as_two_stage=False, | |
num_feature_levels=4, | |
two_stage_num_proposals=300, | |
**kwargs): | |
super(DeformableDetrTransformer, self).__init__(**kwargs) | |
self.as_two_stage = as_two_stage | |
self.num_feature_levels = num_feature_levels | |
self.two_stage_num_proposals = two_stage_num_proposals | |
self.embed_dims = self.encoder.embed_dims | |
self.init_layers() | |
def init_layers(self): | |
"""Initialize layers of the DeformableDetrTransformer.""" | |
self.level_embeds = nn.Parameter( | |
torch.Tensor(self.num_feature_levels, self.embed_dims)) | |
if self.as_two_stage: | |
self.enc_output = nn.Linear(self.embed_dims, self.embed_dims) | |
self.enc_output_norm = nn.LayerNorm(self.embed_dims) | |
self.pos_trans = nn.Linear(self.embed_dims * 2, | |
self.embed_dims * 2) | |
self.pos_trans_norm = nn.LayerNorm(self.embed_dims * 2) | |
else: | |
self.reference_points = nn.Linear(self.embed_dims, 2) | |
def init_weights(self): | |
"""Initialize the transformer weights.""" | |
for p in self.parameters(): | |
if p.dim() > 1: | |
nn.init.xavier_uniform_(p) | |
for m in self.modules(): | |
if isinstance(m, MultiScaleDeformableAttention): | |
m.init_weights() | |
if not self.as_two_stage: | |
xavier_init(self.reference_points, distribution='uniform', bias=0.) | |
normal_(self.level_embeds) | |
def gen_encoder_output_proposals(self, memory, memory_padding_mask, | |
spatial_shapes): | |
"""Generate proposals from encoded memory. | |
Args: | |
memory (Tensor) : The output of encoder, | |
has shape (bs, num_key, embed_dim). num_key is | |
equal the number of points on feature map from | |
all level. | |
memory_padding_mask (Tensor): Padding mask for memory. | |
has shape (bs, num_key). | |
spatial_shapes (Tensor): The shape of all feature maps. | |
has shape (num_level, 2). | |
Returns: | |
tuple: A tuple of feature map and bbox prediction. | |
- output_memory (Tensor): The input of decoder, \ | |
has shape (bs, num_key, embed_dim). num_key is \ | |
equal the number of points on feature map from \ | |
all levels. | |
- output_proposals (Tensor): The normalized proposal \ | |
after a inverse sigmoid, has shape \ | |
(bs, num_keys, 4). | |
""" | |
N, S, C = memory.shape | |
proposals = [] | |
_cur = 0 | |
for lvl, (H, W) in enumerate(spatial_shapes): | |
mask_flatten_ = memory_padding_mask[:, _cur:(_cur + H * W)].view( | |
N, H, W, 1) | |
valid_H = torch.sum(~mask_flatten_[:, :, 0, 0], 1) | |
valid_W = torch.sum(~mask_flatten_[:, 0, :, 0], 1) | |
grid_y, grid_x = torch.meshgrid( | |
torch.linspace( | |
0, H - 1, H, dtype=torch.float32, device=memory.device), | |
torch.linspace( | |
0, W - 1, W, dtype=torch.float32, device=memory.device)) | |
grid = torch.cat([grid_x.unsqueeze(-1), grid_y.unsqueeze(-1)], -1) | |
scale = torch.cat([valid_W.unsqueeze(-1), | |
valid_H.unsqueeze(-1)], 1).view(N, 1, 1, 2) | |
grid = (grid.unsqueeze(0).expand(N, -1, -1, -1) + 0.5) / scale | |
wh = torch.ones_like(grid) * 0.05 * (2.0**lvl) | |
proposal = torch.cat((grid, wh), -1).view(N, -1, 4) | |
proposals.append(proposal) | |
_cur += (H * W) | |
output_proposals = torch.cat(proposals, 1) | |
output_proposals_valid = ((output_proposals > 0.01) & | |
(output_proposals < 0.99)).all( | |
-1, keepdim=True) | |
output_proposals = torch.log(output_proposals / (1 - output_proposals)) | |
output_proposals = output_proposals.masked_fill( | |
memory_padding_mask.unsqueeze(-1), float('inf')) | |
output_proposals = output_proposals.masked_fill( | |
~output_proposals_valid, float('inf')) | |
output_memory = memory | |
output_memory = output_memory.masked_fill( | |
memory_padding_mask.unsqueeze(-1), float(0)) | |
output_memory = output_memory.masked_fill(~output_proposals_valid, | |
float(0)) | |
output_memory = self.enc_output_norm(self.enc_output(output_memory)) | |
return output_memory, output_proposals | |
def get_reference_points(spatial_shapes, valid_ratios, device): | |
"""Get the reference points used in decoder. | |
Args: | |
spatial_shapes (Tensor): The shape of all | |
feature maps, has shape (num_level, 2). | |
valid_ratios (Tensor): The radios of valid | |
points on the feature map, has shape | |
(bs, num_levels, 2) | |
device (obj:`device`): The device where | |
reference_points should be. | |
Returns: | |
Tensor: reference points used in decoder, has \ | |
shape (bs, num_keys, num_levels, 2). | |
""" | |
reference_points_list = [] | |
for lvl, (H, W) in enumerate(spatial_shapes): | |
# TODO check this 0.5 | |
ref_y, ref_x = torch.meshgrid( | |
torch.linspace( | |
0.5, H - 0.5, H, dtype=torch.float32, device=device), | |
torch.linspace( | |
0.5, W - 0.5, W, dtype=torch.float32, device=device)) | |
ref_y = ref_y.reshape(-1)[None] / ( | |
valid_ratios[:, None, lvl, 1] * H) | |
ref_x = ref_x.reshape(-1)[None] / ( | |
valid_ratios[:, None, lvl, 0] * W) | |
ref = torch.stack((ref_x, ref_y), -1) | |
reference_points_list.append(ref) | |
reference_points = torch.cat(reference_points_list, 1) | |
reference_points = reference_points[:, :, None] * valid_ratios[:, None] | |
return reference_points | |
def get_valid_ratio(self, mask): | |
"""Get the valid radios of feature maps of all level.""" | |
_, H, W = mask.shape | |
valid_H = torch.sum(~mask[:, :, 0], 1) | |
valid_W = torch.sum(~mask[:, 0, :], 1) | |
valid_ratio_h = valid_H.float() / H | |
valid_ratio_w = valid_W.float() / W | |
valid_ratio = torch.stack([valid_ratio_w, valid_ratio_h], -1) | |
return valid_ratio | |
def get_proposal_pos_embed(self, | |
proposals, | |
num_pos_feats=128, | |
temperature=10000): | |
"""Get the position embedding of proposal.""" | |
scale = 2 * math.pi | |
dim_t = torch.arange( | |
num_pos_feats, dtype=torch.float32, device=proposals.device) | |
dim_t = temperature**(2 * (dim_t // 2) / num_pos_feats) | |
# N, L, 4 | |
proposals = proposals.sigmoid() * scale | |
# N, L, 4, 128 | |
pos = proposals[:, :, :, None] / dim_t | |
# N, L, 4, 64, 2 | |
pos = torch.stack((pos[:, :, :, 0::2].sin(), pos[:, :, :, 1::2].cos()), | |
dim=4).flatten(2) | |
return pos | |
def forward(self, | |
mlvl_feats, | |
mlvl_masks, | |
query_embed, | |
mlvl_pos_embeds, | |
reg_branches=None, | |
cls_branches=None, | |
**kwargs): | |
"""Forward function for `Transformer`. | |
Args: | |
mlvl_feats (list(Tensor)): Input queries from | |
different level. Each element has shape | |
[bs, embed_dims, h, w]. | |
mlvl_masks (list(Tensor)): The key_padding_mask from | |
different level used for encoder and decoder, | |
each element has shape [bs, h, w]. | |
query_embed (Tensor): The query embedding for decoder, | |
with shape [num_query, c]. | |
mlvl_pos_embeds (list(Tensor)): The positional encoding | |
of feats from different level, has the shape | |
[bs, embed_dims, h, w]. | |
reg_branches (obj:`nn.ModuleList`): Regression heads for | |
feature maps from each decoder layer. Only would | |
be passed when | |
`with_box_refine` is True. Default to None. | |
cls_branches (obj:`nn.ModuleList`): Classification heads | |
for feature maps from each decoder layer. Only would | |
be passed when `as_two_stage` | |
is True. Default to None. | |
Returns: | |
tuple[Tensor]: results of decoder containing the following tensor. | |
- inter_states: Outputs from decoder. If | |
return_intermediate_dec is True output has shape \ | |
(num_dec_layers, bs, num_query, embed_dims), else has \ | |
shape (1, bs, num_query, embed_dims). | |
- init_reference_out: The initial value of reference \ | |
points, has shape (bs, num_queries, 4). | |
- inter_references_out: The internal value of reference \ | |
points in decoder, has shape \ | |
(num_dec_layers, bs,num_query, embed_dims) | |
- enc_outputs_class: The classification score of \ | |
proposals generated from \ | |
encoder's feature maps, has shape \ | |
(batch, h*w, num_classes). \ | |
Only would be returned when `as_two_stage` is True, \ | |
otherwise None. | |
- enc_outputs_coord_unact: The regression results \ | |
generated from encoder's feature maps., has shape \ | |
(batch, h*w, 4). Only would \ | |
be returned when `as_two_stage` is True, \ | |
otherwise None. | |
""" | |
assert self.as_two_stage or query_embed is not None | |
feat_flatten = [] | |
mask_flatten = [] | |
lvl_pos_embed_flatten = [] | |
spatial_shapes = [] | |
for lvl, (feat, mask, pos_embed) in enumerate( | |
zip(mlvl_feats, mlvl_masks, mlvl_pos_embeds)): | |
bs, c, h, w = feat.shape | |
spatial_shape = (h, w) | |
spatial_shapes.append(spatial_shape) | |
feat = feat.flatten(2).transpose(1, 2) | |
mask = mask.flatten(1) | |
pos_embed = pos_embed.flatten(2).transpose(1, 2) | |
lvl_pos_embed = pos_embed + self.level_embeds[lvl].view(1, 1, -1) | |
lvl_pos_embed_flatten.append(lvl_pos_embed) | |
feat_flatten.append(feat) | |
mask_flatten.append(mask) | |
feat_flatten = torch.cat(feat_flatten, 1) | |
mask_flatten = torch.cat(mask_flatten, 1) | |
lvl_pos_embed_flatten = torch.cat(lvl_pos_embed_flatten, 1) | |
spatial_shapes = torch.as_tensor( | |
spatial_shapes, dtype=torch.long, device=feat_flatten.device) | |
level_start_index = torch.cat((spatial_shapes.new_zeros( | |
(1, )), spatial_shapes.prod(1).cumsum(0)[:-1])) | |
valid_ratios = torch.stack( | |
[self.get_valid_ratio(m) for m in mlvl_masks], 1) | |
reference_points = \ | |
self.get_reference_points(spatial_shapes, | |
valid_ratios, | |
device=feat.device) | |
feat_flatten = feat_flatten.permute(1, 0, 2) # (H*W, bs, embed_dims) | |
lvl_pos_embed_flatten = lvl_pos_embed_flatten.permute( | |
1, 0, 2) # (H*W, bs, embed_dims) | |
memory = self.encoder( | |
query=feat_flatten, | |
key=None, | |
value=None, | |
query_pos=lvl_pos_embed_flatten, | |
query_key_padding_mask=mask_flatten, | |
spatial_shapes=spatial_shapes, | |
reference_points=reference_points, | |
level_start_index=level_start_index, | |
valid_ratios=valid_ratios, | |
**kwargs) | |
memory = memory.permute(1, 0, 2) | |
bs, _, c = memory.shape | |
if self.as_two_stage: | |
output_memory, output_proposals = \ | |
self.gen_encoder_output_proposals( | |
memory, mask_flatten, spatial_shapes) | |
enc_outputs_class = cls_branches[self.decoder.num_layers]( | |
output_memory) | |
enc_outputs_coord_unact = \ | |
reg_branches[ | |
self.decoder.num_layers](output_memory) + output_proposals | |
topk = self.two_stage_num_proposals | |
# We only use the first channel in enc_outputs_class as foreground, | |
# the other (num_classes - 1) channels are actually not used. | |
# Its targets are set to be 0s, which indicates the first | |
# class (foreground) because we use [0, num_classes - 1] to | |
# indicate class labels, background class is indicated by | |
# num_classes (similar convention in RPN). | |
# See https://github.com/open-mmlab/mmdetection/blob/master/mmdet/models/dense_heads/deformable_detr_head.py#L241 # noqa | |
# This follows the official implementation of Deformable DETR. | |
topk_proposals = torch.topk( | |
enc_outputs_class[..., 0], topk, dim=1)[1] | |
topk_coords_unact = torch.gather( | |
enc_outputs_coord_unact, 1, | |
topk_proposals.unsqueeze(-1).repeat(1, 1, 4)) | |
topk_coords_unact = topk_coords_unact.detach() | |
reference_points = topk_coords_unact.sigmoid() | |
init_reference_out = reference_points | |
pos_trans_out = self.pos_trans_norm( | |
self.pos_trans(self.get_proposal_pos_embed(topk_coords_unact))) | |
query_pos, query = torch.split(pos_trans_out, c, dim=2) | |
else: | |
query_pos, query = torch.split(query_embed, c, dim=1) | |
query_pos = query_pos.unsqueeze(0).expand(bs, -1, -1) | |
query = query.unsqueeze(0).expand(bs, -1, -1) | |
reference_points = self.reference_points(query_pos).sigmoid() | |
init_reference_out = reference_points | |
# decoder | |
query = query.permute(1, 0, 2) | |
memory = memory.permute(1, 0, 2) | |
query_pos = query_pos.permute(1, 0, 2) | |
inter_states, inter_references = self.decoder( | |
query=query, | |
key=None, | |
value=memory, | |
query_pos=query_pos, | |
key_padding_mask=mask_flatten, | |
reference_points=reference_points, | |
spatial_shapes=spatial_shapes, | |
level_start_index=level_start_index, | |
valid_ratios=valid_ratios, | |
reg_branches=reg_branches, | |
**kwargs) | |
inter_references_out = inter_references | |
if self.as_two_stage: | |
return inter_states, init_reference_out,\ | |
inter_references_out, enc_outputs_class,\ | |
enc_outputs_coord_unact | |
return inter_states, init_reference_out, \ | |
inter_references_out, None, None | |
class DynamicConv(BaseModule): | |
"""Implements Dynamic Convolution. | |
This module generate parameters for each sample and | |
use bmm to implement 1*1 convolution. Code is modified | |
from the `official github repo <https://github.com/PeizeSun/ | |
SparseR-CNN/blob/main/projects/SparseRCNN/sparsercnn/head.py#L258>`_ . | |
Args: | |
in_channels (int): The input feature channel. | |
Defaults to 256. | |
feat_channels (int): The inner feature channel. | |
Defaults to 64. | |
out_channels (int, optional): The output feature channel. | |
When not specified, it will be set to `in_channels` | |
by default | |
input_feat_shape (int): The shape of input feature. | |
Defaults to 7. | |
with_proj (bool): Project two-dimentional feature to | |
one-dimentional feature. Default to True. | |
act_cfg (dict): The activation config for DynamicConv. | |
norm_cfg (dict): Config dict for normalization layer. Default | |
layer normalization. | |
init_cfg (obj:`mmcv.ConfigDict`): The Config for initialization. | |
Default: None. | |
""" | |
def __init__(self, | |
in_channels=256, | |
feat_channels=64, | |
out_channels=None, | |
input_feat_shape=7, | |
with_proj=True, | |
act_cfg=dict(type='ReLU', inplace=True), | |
norm_cfg=dict(type='LN'), | |
init_cfg=None): | |
super(DynamicConv, self).__init__(init_cfg) | |
self.in_channels = in_channels | |
self.feat_channels = feat_channels | |
self.out_channels_raw = out_channels | |
self.input_feat_shape = input_feat_shape | |
self.with_proj = with_proj | |
self.act_cfg = act_cfg | |
self.norm_cfg = norm_cfg | |
self.out_channels = out_channels if out_channels else in_channels | |
self.num_params_in = self.in_channels * self.feat_channels | |
self.num_params_out = self.out_channels * self.feat_channels | |
self.dynamic_layer = nn.Linear( | |
self.in_channels, self.num_params_in + self.num_params_out) | |
self.norm_in = build_norm_layer(norm_cfg, self.feat_channels)[1] | |
self.norm_out = build_norm_layer(norm_cfg, self.out_channels)[1] | |
self.activation = build_activation_layer(act_cfg) | |
num_output = self.out_channels * input_feat_shape**2 | |
if self.with_proj: | |
self.fc_layer = nn.Linear(num_output, self.out_channels) | |
self.fc_norm = build_norm_layer(norm_cfg, self.out_channels)[1] | |
def forward(self, param_feature, input_feature): | |
"""Forward function for `DynamicConv`. | |
Args: | |
param_feature (Tensor): The feature can be used | |
to generate the parameter, has shape | |
(num_all_proposals, in_channels). | |
input_feature (Tensor): Feature that | |
interact with parameters, has shape | |
(num_all_proposals, in_channels, H, W). | |
Returns: | |
Tensor: The output feature has shape | |
(num_all_proposals, out_channels). | |
""" | |
input_feature = input_feature.flatten(2).permute(2, 0, 1) | |
input_feature = input_feature.permute(1, 0, 2) | |
parameters = self.dynamic_layer(param_feature) | |
param_in = parameters[:, :self.num_params_in].view( | |
-1, self.in_channels, self.feat_channels) | |
param_out = parameters[:, -self.num_params_out:].view( | |
-1, self.feat_channels, self.out_channels) | |
# input_feature has shape (num_all_proposals, H*W, in_channels) | |
# param_in has shape (num_all_proposals, in_channels, feat_channels) | |
# feature has shape (num_all_proposals, H*W, feat_channels) | |
features = torch.bmm(input_feature, param_in) | |
features = self.norm_in(features) | |
features = self.activation(features) | |
# param_out has shape (batch_size, feat_channels, out_channels) | |
features = torch.bmm(features, param_out) | |
features = self.norm_out(features) | |
features = self.activation(features) | |
if self.with_proj: | |
features = features.flatten(1) | |
features = self.fc_layer(features) | |
features = self.fc_norm(features) | |
features = self.activation(features) | |
return features | |