import os
import yaml
import torch
import sys
sys.path.append(os.path.abspath('./'))
from inference.utils import *
from train import WurstCoreB
from gdf import DDPMSampler
from train import WurstCore_t2i as WurstCoreC
import numpy as np
import random
import argparse
import gradio as gr
import spaces
from huggingface_hub import hf_hub_url
import subprocess
from huggingface_hub import hf_hub_download
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument( '--height', type=int, default=2560, help='image height')
parser.add_argument('--width', type=int, default=5120, help='image width')
parser.add_argument('--seed', type=int, default=123, help='random seed')
parser.add_argument('--dtype', type=str, default='bf16', help=' if bf16 does not work, change it to float32 ')
parser.add_argument('--config_c', type=str,
default='configs/training/t2i.yaml' ,help='config file for stage c, latent generation')
parser.add_argument('--config_b', type=str,
default='configs/inference/stage_b_1b.yaml' ,help='config file for stage b, latent decoding')
parser.add_argument( '--prompt', type=str,
default='A photo-realistic image of a west highland white terrier in the garden, high quality, detail rich, 8K', help='text prompt')
parser.add_argument( '--num_image', type=int, default=1, help='how many images generated')
parser.add_argument( '--output_dir', type=str, default='figures/output_results/', help='output directory for generated image')
parser.add_argument( '--stage_a_tiled', action='store_true', help='whther or nor to use tiled decoding for stage a to save memory')
parser.add_argument( '--pretrained_path', type=str, default='models/ultrapixel_t2i.safetensors', help='pretrained path of newly added paramter of UltraPixel')
args = parser.parse_args()
return args
def clear_image():
return None
def load_message(height, width, seed, prompt, args, stage_a_tiled):
args.height = height
args.width = width
args.seed = seed
args.prompt = prompt + ' rich detail, 4k, high quality'
args.stage_a_tiled = stage_a_tiled
return args
@spaces.GPU(duration=120)
def get_image(height, width, seed, prompt, cfg, timesteps, stage_a_tiled):
global args
args = load_message(height, width, seed, prompt, args, stage_a_tiled)
torch.manual_seed(args.seed)
random.seed(args.seed)
np.random.seed(args.seed)
dtype = torch.bfloat16 if args.dtype == 'bf16' else torch.float
captions = [args.prompt] * args.num_image
height, width = args.height, args.width
batch_size=1
height_lr, width_lr = get_target_lr_size(height / width, std_size=32)
stage_c_latent_shape, stage_b_latent_shape = calculate_latent_sizes(height, width, batch_size=batch_size)
stage_c_latent_shape_lr, stage_b_latent_shape_lr = calculate_latent_sizes(height_lr, width_lr, batch_size=batch_size)
# Stage C Parameters
extras.sampling_configs['cfg'] = 4
extras.sampling_configs['shift'] = 1
extras.sampling_configs['timesteps'] = 20
extras.sampling_configs['t_start'] = 1.0
extras.sampling_configs['sampler'] = DDPMSampler(extras.gdf)
# Stage B Parameters
extras_b.sampling_configs['cfg'] = 1.1
extras_b.sampling_configs['shift'] = 1
extras_b.sampling_configs['timesteps'] = 10
extras_b.sampling_configs['t_start'] = 1.0
for _, caption in enumerate(captions):
batch = {'captions': [caption] * batch_size}
#conditions = core.get_conditions(batch, models, extras, is_eval=True, is_unconditional=False, eval_image_embeds=False)
#unconditions = core.get_conditions(batch, models, extras, is_eval=True, is_unconditional=True, eval_image_embeds=False)
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
with torch.no_grad():
models.generator.cuda()
print('STAGE C GENERATION***************************')
with torch.cuda.amp.autocast(dtype=dtype):
sampled_c = generation_c(batch, models, extras, core, stage_c_latent_shape, stage_c_latent_shape_lr, device)
models.generator.cpu()
torch.cuda.empty_cache()
conditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=False)
unconditions_b = core_b.get_conditions(batch, models_b, extras_b, is_eval=True, is_unconditional=True)
conditions_b['effnet'] = sampled_c
unconditions_b['effnet'] = torch.zeros_like(sampled_c)
print('STAGE B + A DECODING***************************')
with torch.cuda.amp.autocast(dtype=dtype):
sampled = decode_b(conditions_b, unconditions_b, models_b, stage_b_latent_shape, extras_b, device, stage_a_tiled=args.stage_a_tiled)
torch.cuda.empty_cache()
imgs = show_images(sampled)
#for idx, img in enumerate(imgs):
#print(os.path.join(save_dir, args.prompt[:20]+'_' + str(cnt).zfill(5) + '.jpg'), idx)
#img.save(os.path.join(save_dir, args.prompt[:20]+'_' + str(cnt).zfill(5) + '.jpg'))
return imgs[0]
#print('finished! Results ')
with gr.Blocks() as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("
UltraPixel: Advancing Ultra-High-Resolution Image Synthesis to New Peaks
")
with gr.Row():
prompt = gr.Textbox(
label="Text Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False
)
polish_button = gr.Button("Submit!", scale=0)
output_img = gr.Image(label="Output Image", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Number(
label="Random Seed",
value=123,
step=1,
minimum=0,
#maximum=MAX_SEED
)
#randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=1536,
maximum=5120,
step=32,
value=4096
)
height = gr.Slider(
label="Height",
minimum=1536,
maximum=4096,
step=32,
value=2304
)
with gr.Row():
cfg = gr.Slider(
label="CFG",
minimum=3,
maximum=10,
step=0.1,
value=4
)
timesteps = gr.Slider(
label="Timesteps",
minimum=10,
maximum=50,
step=1,
value=20
)
stage_a_tiled = gr.Checkbox(label="Stage_a_tiled", value=False)
clear_button = gr.Button("Clear!")
gr.Examples(
examples=[
"A detailed view of a blooming magnolia tree, with large, white flowers and dark green leaves, set against a clear blue sky.",
"A close-up portrait of a young woman with flawless skin, vibrant red lipstick, and wavy brown hair, wearing a vintage floral dress and standing in front of a blooming garden.",
"The image features a snow-covered mountain range with a large, snow-covered mountain in the background. The mountain is surrounded by a forest of trees, and the sky is filled with clouds. The scene is set during the winter season, with snow covering the ground and the trees.",
"Crocodile in a sweater.",
"A vibrant anime scene of a young girl with long, flowing pink hair, big sparkling blue eyes, and a school uniform, standing under a cherry blossom tree with petals falling around her. The background shows a traditional Japanese school with cherry blossoms in full bloom.",
"A playful Labrador retriever puppy with a shiny, golden coat, chasing a red ball in a spacious backyard, with green grass and a wooden fence.",
"A cozy, rustic log cabin nestled in a snow-covered forest, with smoke rising from the stone chimney, warm lights glowing from the windows, and a path of footprints leading to the front door.",
"A highly detailed, high-quality image of the Banff National Park in Canada. The turquoise waters of Lake Louise are surrounded by snow-capped mountains and dense pine forests. A wooden canoe is docked at the edge of the lake. The sky is a clear, bright blue, and the air is crisp and fresh.",
"A highly detailed, high-quality image of a Shih Tzu receiving a bath in a home bathroom. The dog is standing in a tub, covered in suds, with a slightly wet and adorable look. The background includes bathroom fixtures, towels, and a clean, tiled floor.",
],
inputs=[prompt],
outputs=[output_img],
examples_per_page=5
)
polish_button.click(get_image, inputs=[height, width, seed, prompt, cfg, timesteps, stage_a_tiled], outputs=output_img)
polish_button.click(clear_image, inputs=[], outputs=output_img)
def download_with_wget(url, save_path):
try:
subprocess.run(['wget', url, '-O', save_path], check=True)
print(f"Downloaded to {save_path}")
except subprocess.CalledProcessError as e:
print(f"Error downloading file: {e}")
def download_model():
urls = [
'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_a.safetensors',
'https://huggingface.co/stabilityai/StableWurst/resolve/main/previewer.safetensors',
'https://huggingface.co/stabilityai/StableWurst/resolve/main/effnet_encoder.safetensors',
'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_b_lite_bf16.safetensors',
'https://huggingface.co/stabilityai/StableWurst/resolve/main/stage_c_bf16.safetensors',
]
for file_url in urls:
hf_hub_download(repo_id="stabilityai/stable-cascade", filename=file_url.split('/')[-1], local_dir='models')
# 'https://huggingface.co/roubaofeipi/UltraPixel/blob/main/ultrapixel_t2i.safetensors'
hf_hub_download(repo_id="roubaofeipi/UltraPixel", filename='ultrapixel_t2i.safetensors', local_dir='models')
if __name__ == "__main__":
args = parse_args()
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
download_model()
config_file = args.config_c
with open(config_file, "r", encoding="utf-8") as file:
loaded_config = yaml.safe_load(file)
core = WurstCoreC(config_dict=loaded_config, device=device, training=False)
# SETUP STAGE B
config_file_b = args.config_b
with open(config_file_b, "r", encoding="utf-8") as file:
config_file_b = yaml.safe_load(file)
core_b = WurstCoreB(config_dict=config_file_b, device=device, training=False)
extras = core.setup_extras_pre()
models = core.setup_models(extras)
models.generator.eval().requires_grad_(False)
print("STAGE C READY")
extras_b = core_b.setup_extras_pre()
models_b = core_b.setup_models(extras_b, skip_clip=True)
models_b = WurstCoreB.Models(
**{**models_b.to_dict(), 'tokenizer': models.tokenizer, 'text_model': models.text_model}
)
models_b.generator.bfloat16().eval().requires_grad_(False)
print("STAGE B READY")
pretrained_path = args.pretrained_path
sdd = torch.load(pretrained_path, map_location='cpu')
collect_sd = {}
for k, v in sdd.items():
collect_sd[k[7:]] = v
models.train_norm.load_state_dict(collect_sd)
models.generator.eval()
models.train_norm.eval()
demo.launch(
debug=True, share=True,
)