File size: 11,559 Bytes
231fb5f
a5e055b
231fb5f
7e2d83a
231fb5f
45cb2fc
7e2d83a
2796a5e
dfcd89e
 
 
 
1b825cc
 
 
 
 
2796a5e
231fb5f
2796a5e
a5e055b
231fb5f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78e7cbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
231fb5f
 
 
08a0b8f
 
 
 
1b825cc
 
 
 
 
 
 
 
 
 
 
7137466
 
1b825cc
1f0b302
78e7cbb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7137466
 
78e7cbb
 
 
1b825cc
 
78e7cbb
 
 
 
7137466
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78e7cbb
 
7137466
78e7cbb
1f0b302
7137466
 
 
 
 
 
 
 
 
 
 
 
 
1f0b302
78e7cbb
 
 
 
08a0b8f
78e7cbb
 
 
 
 
08a0b8f
78e7cbb
8ce99fe
78e7cbb
 
 
 
 
 
 
 
 
 
 
 
 
08a0b8f
d3fde93
 
5fd8357
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3fde93
 
1f0b302
5fd8357
 
 
 
 
 
 
 
 
 
 
 
 
 
08a0b8f
5fd8357
 
 
 
 
 
1b825cc
5fd8357
 
 
 
1f0b302
 
 
 
 
 
 
78e7cbb
5fd8357
 
 
 
 
 
 
 
 
1f0b302
231fb5f
 
 
 
1f0b302
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import os
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoProcessor, TextIteratorStreamer, BitsAndBytesConfig
import gradio as gr
from threading import Thread
import numpy as np
from PIL import Image
import subprocess
import spaces
from parler_tts import ParlerTTSForConditionalGeneration
import soundfile as sf
import tempfile
import asyncio
from concurrent.futures import ThreadPoolExecutor

# Add this global variable after the imports
executor = ThreadPoolExecutor(max_workers=2)

# Install flash-attention
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)

# Constants
TITLE = "<h1><center>Phi 3.5 Multimodal (Text + Vision)</center></h1>"
DESCRIPTION = "# Phi-3.5 Multimodal Demo (Text + Vision)"

# Model configurations
TEXT_MODEL_ID = "microsoft/Phi-3.5-mini-instruct"
VISION_MODEL_ID = "microsoft/Phi-3.5-vision-instruct"

device = "cuda" if torch.cuda.is_available() else "cpu"

# Quantization config for text model
quantization_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4"
)

# Load models and tokenizers
text_tokenizer = AutoTokenizer.from_pretrained(TEXT_MODEL_ID)
text_model = AutoModelForCausalLM.from_pretrained(
    TEXT_MODEL_ID,
    torch_dtype=torch.bfloat16,
    device_map="auto",
    quantization_config=quantization_config
)

try:
    vision_model = AutoModelForCausalLM.from_pretrained(
        VISION_MODEL_ID, 
        trust_remote_code=True, 
        torch_dtype="auto", 
        attn_implementation="flash_attention_2"
    ).to(device).eval()
except Exception as e:
    print(f"Error loading model with flash attention: {e}")
    print("Falling back to default attention implementation")
    vision_model = AutoModelForCausalLM.from_pretrained(
        VISION_MODEL_ID, 
        trust_remote_code=True, 
        torch_dtype="auto"
    ).to(device).eval()

vision_processor = AutoProcessor.from_pretrained(VISION_MODEL_ID, trust_remote_code=True)

# Initialize Parler-TTS
tts_model = ParlerTTSForConditionalGeneration.from_pretrained("parler-tts/parler-tts-mini-v1").to(device)
tts_tokenizer = AutoTokenizer.from_pretrained("parler-tts/parler-tts-mini-v1")

# Add the generate_speech function here
async def generate_speech(text, tts_model, tts_tokenizer):
    tts_input_ids = tts_tokenizer(text, return_tensors="pt").input_ids.to(device)
    tts_description = "A clear and natural voice reads the text with moderate speed and expression."
    tts_description_ids = tts_tokenizer(tts_description, return_tensors="pt").input_ids.to(device)
    
    with torch.no_grad():
        audio_generation = tts_model.generate(input_ids=tts_description_ids, prompt_input_ids=tts_input_ids)
    
    return audio_generation.cpu().numpy().squeeze()

from gradio import Error as GradioError

@spaces.GPU(timeout=300)
def stream_text_chat(message, history, system_prompt, temperature=0.8, max_new_tokens=1024, top_p=1.0, top_k=20, use_tts=True):
    try:
        conversation = [{"role": "system", "content": system_prompt}]
        for prompt, answer in history:
            conversation.extend([
                {"role": "user", "content": prompt},
                {"role": "assistant", "content": answer},
            ])
        conversation.append({"role": "user", "content": message})

        input_ids = text_tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt").to(text_model.device)
        attention_mask = torch.ones_like(input_ids)
        streamer = TextIteratorStreamer(text_tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)

        generate_kwargs = dict(
            input_ids=input_ids,
            attention_mask=attention_mask,
            max_new_tokens=max_new_tokens,
            do_sample=temperature > 0,
            top_p=top_p,
            top_k=top_k,
            temperature=temperature,
            eos_token_id=text_tokenizer.eos_token_id,
            pad_token_id=text_tokenizer.pad_token_id,
            streamer=streamer,
        )

        thread = Thread(target=text_model.generate, kwargs=generate_kwargs)
        thread.start()

        buffer = ""
        for new_text in streamer:
            buffer += new_text
            yield history + [[message, buffer]], None  # Yield None for audio initially

        # Only attempt TTS if it's enabled and we have a response
        if use_tts and buffer:
            try:
                audio = generate_speech_sync(buffer, tts_model, tts_tokenizer)
                yield history + [[message, buffer]], (tts_model.config.sampling_rate, audio)
            except Exception as e:
                print(f"TTS failed: {str(e)}")
                yield history + [[message, buffer]], None
        else:
            yield history + [[message, buffer]], None

    except GradioError:
        yield history + [[message, "GPU task aborted. Please try again."]], None
    except Exception as e:
        print(f"An error occurred: {str(e)}")
        yield history + [[message, f"An error occurred: {str(e)}"]], None

def generate_speech_sync(text, tts_model, tts_tokenizer):
    try:
        tts_input_ids = tts_tokenizer(text, return_tensors="pt").input_ids.to(device)
        tts_description = "A clear and natural voice reads the text with moderate speed and expression."
        tts_description_ids = tts_tokenizer(tts_description, return_tensors="pt").input_ids.to(device)
        
        with torch.no_grad():
            audio_generation = tts_model.generate(input_ids=tts_description_ids, prompt_input_ids=tts_input_ids)
        
        audio_buffer = audio_generation.cpu().numpy().squeeze()
        return audio_buffer if audio_buffer.size > 0 else np.array([0.0])
    except Exception as e:
        print(f"Speech generation failed: {str(e)}")
        return np.array([0.0])

@spaces.GPU(timeout=300)  # Increase timeout to 5 minutes
def process_vision_query(image, text_input):
    try:
        prompt = f"<|user|>\n<|image_1|>\n{text_input}<|end|>\n<|assistant|>\n"
        
        # Ensure the image is in the correct format
        if isinstance(image, np.ndarray):
            image = Image.fromarray(image).convert("RGB")
        elif not isinstance(image, Image.Image):
            raise ValueError("Invalid image type. Expected PIL.Image.Image or numpy.ndarray")
        
        inputs = vision_processor(prompt, images=image, return_tensors="pt").to(device)
        
        with torch.no_grad():
            generate_ids = vision_model.generate(
                **inputs, 
                max_new_tokens=1000, 
                eos_token_id=vision_processor.tokenizer.eos_token_id
            )
        
        generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
        response = vision_processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
        return response
    except Exception as e:
        print(f"An error occurred: {str(e)}")
        return f"An error occurred: {str(e)}"

# Custom CSS
custom_css = """
body { background-color: #0b0f19; color: #e2e8f0; font-family: 'Arial', sans-serif;}
#custom-header { text-align: center; padding: 20px 0; background-color: #1a202c; margin-bottom: 20px; border-radius: 10px;}
#custom-header h1 { font-size: 2.5rem; margin-bottom: 0.5rem;}
#custom-header h1 .blue { color: #60a5fa;}
#custom-header h1 .pink { color: #f472b6;}
#custom-header h2 { font-size: 1.5rem; color: #94a3b8;}
.suggestions { display: flex; justify-content: center; flex-wrap: wrap; gap: 1rem; margin: 20px 0;}
.suggestion { background-color: #1e293b; border-radius: 0.5rem; padding: 1rem; display: flex; align-items: center; transition: transform 0.3s ease; width: 200px;}
.suggestion:hover { transform: translateY(-5px);}
.suggestion-icon { font-size: 1.5rem; margin-right: 1rem; background-color: #2d3748; padding: 0.5rem; border-radius: 50%;}
.gradio-container { max-width: 100% !important;}
#component-0, #component-1, #component-2 { max-width: 100% !important;}
footer { text-align: center; margin-top: 2rem; color: #64748b;}
"""

# Custom HTML for the header
custom_header = """
<div id="custom-header">
    <h1><span class="blue">Phi 3.5</span> <span class="pink">Multimodal Assistant</span></h1>
    <h2>Text and Vision AI at Your Service</h2>
</div>
"""

# Custom HTML for suggestions
custom_suggestions = """
<div class="suggestions">
    <div class="suggestion">
        <span class="suggestion-icon">💬</span>
        <p>Chat with the Text Model</p>
    </div>
    <div class="suggestion">
        <span class="suggestion-icon">🖼️</span>
        <p>Analyze Images with Vision Model</p>
    </div>
    <div class="suggestion">
        <span class="suggestion-icon">🤖</span>
        <p>Get AI-generated responses</p>
    </div>
    <div class="suggestion">
        <span class="suggestion-icon">🔍</span>
        <p>Explore advanced options</p>
    </div>
</div>
"""

# Gradio interface
with gr.Blocks(css=custom_css, theme=gr.themes.Base().set(
    body_background_fill="#0b0f19",
    body_text_color="#e2e8f0",
    button_primary_background_fill="#3b82f6",
    button_primary_background_fill_hover="#2563eb",
    button_primary_text_color="white",
    block_title_text_color="#94a3b8",
    block_label_text_color="#94a3b8",
)) as demo:
    gr.HTML(custom_header)

    with gr.Tab("Text Model (Phi-3.5-mini)"):
        chatbot = gr.Chatbot(height=400)
        msg = gr.Textbox(label="Message", placeholder="Type your message here...")
        audio_output = gr.Audio(label="Generated Speech", autoplay=True)
        with gr.Accordion("Advanced Options", open=False):
            system_prompt = gr.Textbox(value="You are a helpful assistant", label="System Prompt")
            temperature = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.8, label="Temperature")
            max_new_tokens = gr.Slider(minimum=128, maximum=8192, step=1, value=1024, label="Max new tokens")
            top_p = gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=1.0, label="top_p")
            top_k = gr.Slider(minimum=1, maximum=20, step=1, value=20, label="top_k")
            use_tts = gr.Checkbox(label="Enable Text-to-Speech", value=True)
        
        submit_btn = gr.Button("Submit", variant="primary")
        clear_btn = gr.Button("Clear Chat", variant="secondary")

        def clear_chat():
            return None

        submit_btn.click(stream_text_chat, 
                         inputs=[msg, chatbot, system_prompt, temperature, max_new_tokens, top_p, top_k, use_tts], 
                         outputs=[chatbot, audio_output])
        clear_btn.click(clear_chat, outputs=chatbot)

    with gr.Tab("Vision Model (Phi-3.5-vision)"):
        with gr.Row():
            with gr.Column(scale=1):
                vision_input_img = gr.Image(label="Upload an Image", type="pil")
                vision_text_input = gr.Textbox(label="Ask a question about the image", placeholder="What do you see in this image?")
                vision_submit_btn = gr.Button("Analyze Image", variant="primary")
            with gr.Column(scale=1):
                vision_output_text = gr.Textbox(label="AI Analysis", lines=10)
        
        vision_submit_btn.click(process_vision_query, inputs=[vision_input_img, vision_text_input], outputs=vision_output_text)

    gr.HTML("<footer>Powered by Phi 3.5 Multimodal AI</footer>")

if __name__ == "__main__":
    demo.launch(share=True)