Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
from PIL import Image | |
import os | |
import torch | |
from transformers import AutoModelForCausalLM, AutoProcessor | |
import subprocess | |
from io import BytesIO | |
# Install flash-attn | |
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
# Load the model and processor | |
model_id = "microsoft/Phi-3.5-vision-instruct" | |
model = AutoModelForCausalLM.from_pretrained( | |
model_id, | |
trust_remote_code=True, | |
torch_dtype=torch.float16, | |
use_flash_attention_2=False, # Explicitly disable Flash Attention 2 | |
) | |
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True, num_crops=16) | |
def solve_math_problem(image): | |
# Move model to GPU for this function call | |
model.to('cuda') | |
# Prepare the input | |
messages = [ | |
{"role": "user", "content": "<|image_1|>\nSolve this math problem step by step. Explain your reasoning clearly."}, | |
] | |
prompt = processor.tokenizer.apply_chat_template( | |
messages, tokenize=False, add_generation_prompt=True | |
) | |
# Process the input | |
inputs = processor(prompt, image, return_tensors="pt").to("cuda") | |
# Generate the response | |
generation_args = { | |
"max_new_tokens": 1000, | |
"temperature": 0.2, | |
"do_sample": True, | |
} | |
generate_ids = model.generate(**inputs, eos_token_id=processor.tokenizer.eos_token_id, **generation_args) | |
# Decode the response | |
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:] | |
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | |
# Move model back to CPU to free up GPU memory | |
model.to('cpu') | |
return response | |
# Custom CSS | |
custom_css = """ | |
<style> | |
body { | |
font-family: 'Arial', sans-serif; | |
background-color: #f0f3f7; | |
margin: 0; | |
padding: 0; | |
} | |
.container { | |
max-width: 1200px; | |
margin: 0 auto; | |
padding: 20px; | |
} | |
.header { | |
background-color: #2c3e50; | |
color: white; | |
padding: 20px 0; | |
text-align: center; | |
} | |
.header h1 { | |
margin: 0; | |
font-size: 2.5em; | |
} | |
.main-content { | |
display: flex; | |
justify-content: space-between; | |
margin-top: 30px; | |
} | |
.input-section, .output-section { | |
width: 48%; | |
background-color: white; | |
border-radius: 8px; | |
padding: 20px; | |
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); | |
} | |
.gr-button { | |
background-color: #27ae60; | |
color: white; | |
border: none; | |
padding: 10px 20px; | |
border-radius: 5px; | |
cursor: pointer; | |
transition: background-color 0.3s; | |
} | |
.gr-button:hover { | |
background-color: #2ecc71; | |
} | |
.examples-section { | |
margin-top: 30px; | |
background-color: white; | |
border-radius: 8px; | |
padding: 20px; | |
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); | |
} | |
.examples-section h3 { | |
margin-top: 0; | |
color: #2c3e50; | |
} | |
.footer { | |
text-align: center; | |
margin-top: 30px; | |
color: #7f8c8d; | |
} | |
</style> | |
""" | |
# Create the Gradio interface | |
with gr.Blocks(css=custom_css) as iface: | |
gr.HTML(""" | |
<div class="header"> | |
<h1>AI Math Equation Solver</h1> | |
<p>Upload an image of a math problem, and our AI will solve it step by step!</p> | |
</div> | |
""") | |
with gr.Row(equal_height=True): | |
with gr.Column(): | |
gr.HTML("<h2>Upload Your Math Problem</h2>") | |
input_image = gr.Image(type="pil", label="Upload Math Problem Image") | |
submit_btn = gr.Button("Solve Problem", elem_classes=["gr-button"]) | |
with gr.Column(): | |
gr.HTML("<h2>Solution</h2>") | |
output_text = gr.Textbox(label="Step-by-step Solution", lines=10) | |
gr.HTML("<h3>Try These Examples</h3>") | |
examples = gr.Examples( | |
examples=[ | |
os.path.join(os.path.dirname(__file__), "eqn1.png"), | |
os.path.join(os.path.dirname(__file__), "eqn2.png") | |
], | |
inputs=input_image, | |
outputs=output_text, | |
fn=solve_math_problem, | |
cache_examples=True, | |
) | |
gr.HTML(""" | |
<div class="footer"> | |
<p>Powered by Gradio and AI - Created for educational purposes</p> | |
</div> | |
""") | |
submit_btn.click(fn=solve_math_problem, inputs=input_image, outputs=output_text) | |
# Launch the app | |
iface.launch() |