sagar007's picture
Update app.py
cd12ec7 verified
import gradio as gr
import spaces
from PIL import Image
import os
import torch
from transformers import AutoModelForCausalLM, AutoProcessor
import subprocess
from io import BytesIO
# Install flash-attn
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
# Load the model and processor
model_id = "microsoft/Phi-3.5-vision-instruct"
model = AutoModelForCausalLM.from_pretrained(
model_id,
trust_remote_code=True,
torch_dtype=torch.float16,
use_flash_attention_2=False, # Explicitly disable Flash Attention 2
)
processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True, num_crops=16)
@spaces.GPU(duration=120)
def solve_math_problem(image):
# Move model to GPU for this function call
model.to('cuda')
# Prepare the input
messages = [
{"role": "user", "content": "<|image_1|>\nSolve this math problem step by step. Explain your reasoning clearly."},
]
prompt = processor.tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
# Process the input
inputs = processor(prompt, image, return_tensors="pt").to("cuda")
# Generate the response
generation_args = {
"max_new_tokens": 1000,
"temperature": 0.2,
"do_sample": True,
}
generate_ids = model.generate(**inputs, eos_token_id=processor.tokenizer.eos_token_id, **generation_args)
# Decode the response
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
# Move model back to CPU to free up GPU memory
model.to('cpu')
return response
# Custom CSS
custom_css = """
<style>
body {
font-family: 'Arial', sans-serif;
background-color: #f0f3f7;
margin: 0;
padding: 0;
}
.container {
max-width: 1200px;
margin: 0 auto;
padding: 20px;
}
.header {
background-color: #2c3e50;
color: white;
padding: 20px 0;
text-align: center;
}
.header h1 {
margin: 0;
font-size: 2.5em;
}
.main-content {
display: flex;
justify-content: space-between;
margin-top: 30px;
}
.input-section, .output-section {
width: 48%;
background-color: white;
border-radius: 8px;
padding: 20px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.gr-button {
background-color: #27ae60;
color: white;
border: none;
padding: 10px 20px;
border-radius: 5px;
cursor: pointer;
transition: background-color 0.3s;
}
.gr-button:hover {
background-color: #2ecc71;
}
.examples-section {
margin-top: 30px;
background-color: white;
border-radius: 8px;
padding: 20px;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.examples-section h3 {
margin-top: 0;
color: #2c3e50;
}
.footer {
text-align: center;
margin-top: 30px;
color: #7f8c8d;
}
</style>
"""
# Create the Gradio interface
with gr.Blocks(css=custom_css) as iface:
gr.HTML("""
<div class="header">
<h1>AI Math Equation Solver</h1>
<p>Upload an image of a math problem, and our AI will solve it step by step!</p>
</div>
""")
with gr.Row(equal_height=True):
with gr.Column():
gr.HTML("<h2>Upload Your Math Problem</h2>")
input_image = gr.Image(type="pil", label="Upload Math Problem Image")
submit_btn = gr.Button("Solve Problem", elem_classes=["gr-button"])
with gr.Column():
gr.HTML("<h2>Solution</h2>")
output_text = gr.Textbox(label="Step-by-step Solution", lines=10)
gr.HTML("<h3>Try These Examples</h3>")
examples = gr.Examples(
examples=[
os.path.join(os.path.dirname(__file__), "eqn1.png"),
os.path.join(os.path.dirname(__file__), "eqn2.png")
],
inputs=input_image,
outputs=output_text,
fn=solve_math_problem,
cache_examples=True,
)
gr.HTML("""
<div class="footer">
<p>Powered by Gradio and AI - Created for educational purposes</p>
</div>
""")
submit_btn.click(fn=solve_math_problem, inputs=input_image, outputs=output_text)
# Launch the app
iface.launch()