|
import logging |
|
import math |
|
import os |
|
import tempfile |
|
import time |
|
|
|
import gradio as gr |
|
import jax.numpy as jnp |
|
import numpy as np |
|
import yt_dlp as youtube_dl |
|
from jax.experimental.compilation_cache import compilation_cache as cc |
|
from transformers.models.whisper.tokenization_whisper import TO_LANGUAGE_CODE |
|
from transformers.pipelines.audio_utils import ffmpeg_read |
|
|
|
from whisper_jax import FlaxWhisperPipline |
|
|
|
|
|
cc.initialize_cache("./jax_cache") |
|
checkpoint = "openai/whisper-large-v3" |
|
|
|
BATCH_SIZE = 32 |
|
CHUNK_LENGTH_S = 30 |
|
NUM_PROC = 32 |
|
FILE_LIMIT_MB = 1000 |
|
YT_LENGTH_LIMIT_S = 7200 |
|
|
|
title = "Whisper JAX: The Fastest Whisper API ⚡️" |
|
|
|
description = """Whisper JAX is an optimised implementation of the [Whisper model](https://huggingface.co/openai/whisper-large-v3) by OpenAI. This demo is running on JAX with a TPU v5e backend. Compared to PyTorch on an A100 GPU, it is over [**70x faster**](https://github.com/sanchit-gandhi/whisper-jax#benchmarks), making it the fastest Whisper API available. |
|
|
|
Note that at peak times, you may find yourself in the queue for this demo. When you submit a request, your queue position will be shown in the top right-hand side of the demo pane. Once you reach the front of the queue, your audio file will be transcribed, with the progress displayed through a progress bar. |
|
|
|
To skip the queue, you may wish to create your own inference endpoint by duplicating the demo, details for which can be found in the [Whisper JAX repository](https://github.com/sanchit-gandhi/whisper-jax#creating-an-endpoint). |
|
""" |
|
|
|
article = "Whisper large-v3 model by OpenAI. Backend running JAX on a TPU v5e directly through Hugging Face Spaces. Whisper JAX [code](https://github.com/sanchit-gandhi/whisper-jax) and Gradio demo by 🤗 Hugging Face." |
|
|
|
language_names = sorted(TO_LANGUAGE_CODE.keys()) |
|
|
|
logger = logging.getLogger("whisper-jax-app") |
|
logger.setLevel(logging.INFO) |
|
ch = logging.StreamHandler() |
|
ch.setLevel(logging.INFO) |
|
formatter = logging.Formatter("%(asctime)s;%(levelname)s;%(message)s", "%Y-%m-%d %H:%M:%S") |
|
ch.setFormatter(formatter) |
|
logger.addHandler(ch) |
|
|
|
|
|
def identity(batch): |
|
return batch |
|
|
|
|
|
|
|
def format_timestamp(seconds: float, always_include_hours: bool = False, decimal_marker: str = "."): |
|
if seconds is not None: |
|
milliseconds = round(seconds * 1000.0) |
|
|
|
hours = milliseconds // 3_600_000 |
|
milliseconds -= hours * 3_600_000 |
|
|
|
minutes = milliseconds // 60_000 |
|
milliseconds -= minutes * 60_000 |
|
|
|
seconds = milliseconds // 1_000 |
|
milliseconds -= seconds * 1_000 |
|
|
|
hours_marker = f"{hours:02d}:" if always_include_hours or hours > 0 else "" |
|
return f"{hours_marker}{minutes:02d}:{seconds:02d}{decimal_marker}{milliseconds:03d}" |
|
else: |
|
|
|
return seconds |
|
|
|
|
|
if __name__ == "__main__": |
|
pipeline = FlaxWhisperPipline(checkpoint, dtype=jnp.bfloat16, batch_size=BATCH_SIZE) |
|
stride_length_s = CHUNK_LENGTH_S / 6 |
|
chunk_len = round(CHUNK_LENGTH_S * pipeline.feature_extractor.sampling_rate) |
|
stride_left = stride_right = round(stride_length_s * pipeline.feature_extractor.sampling_rate) |
|
step = chunk_len - stride_left - stride_right |
|
|
|
|
|
logger.info("compiling forward call...") |
|
start = time.time() |
|
random_inputs = { |
|
"input_features": np.ones( |
|
(BATCH_SIZE, pipeline.model.config.num_mel_bins, 2 * pipeline.model.config.max_source_positions) |
|
) |
|
} |
|
random_timestamps = pipeline.forward(random_inputs, batch_size=BATCH_SIZE, return_timestamps=True) |
|
compile_time = time.time() - start |
|
logger.info(f"compiled in {compile_time}s") |
|
|
|
def tqdm_generate(inputs: dict, task: str, return_timestamps: bool, progress: gr.Progress): |
|
inputs_len = inputs["array"].shape[0] |
|
all_chunk_start_idx = np.arange(0, inputs_len, step) |
|
num_samples = len(all_chunk_start_idx) |
|
num_batches = math.ceil(num_samples / BATCH_SIZE) |
|
dummy_batches = list( |
|
range(num_batches) |
|
) |
|
|
|
dataloader = pipeline.preprocess_batch(inputs, chunk_length_s=CHUNK_LENGTH_S, batch_size=BATCH_SIZE) |
|
model_outputs = [] |
|
start_time = time.time() |
|
logger.info("transcribing...") |
|
|
|
for batch, _ in zip(dataloader, progress.tqdm(dummy_batches, desc="Transcribing...")): |
|
model_outputs.append(pipeline.forward(batch, batch_size=BATCH_SIZE, task=task, return_timestamps=True)) |
|
runtime = time.time() - start_time |
|
logger.info("done transcription") |
|
|
|
logger.info("post-processing...") |
|
post_processed = pipeline.postprocess(model_outputs, return_timestamps=True) |
|
text = post_processed["text"] |
|
if return_timestamps: |
|
timestamps = post_processed.get("chunks") |
|
timestamps = [ |
|
f"[{format_timestamp(chunk['timestamp'][0])} -> {format_timestamp(chunk['timestamp'][1])}] {chunk['text']}" |
|
for chunk in timestamps |
|
] |
|
text = "\n".join(str(feature) for feature in timestamps) |
|
logger.info("done post-processing") |
|
return text, runtime |
|
|
|
def transcribe_chunked_audio(inputs, task, return_timestamps, progress=gr.Progress()): |
|
progress(0, desc="Loading audio file...") |
|
logger.info("loading audio file...") |
|
if inputs is None: |
|
logger.warning("No audio file") |
|
raise gr.Error("No audio file submitted! Please upload an audio file before submitting your request.") |
|
file_size_mb = os.stat(inputs).st_size / (1024 * 1024) |
|
if file_size_mb > FILE_LIMIT_MB: |
|
logger.warning("Max file size exceeded") |
|
raise gr.Error( |
|
f"File size exceeds file size limit. Got file of size {file_size_mb:.2f}MB for a limit of {FILE_LIMIT_MB}MB." |
|
) |
|
|
|
with open(inputs, "rb") as f: |
|
inputs = f.read() |
|
|
|
inputs = ffmpeg_read(inputs, pipeline.feature_extractor.sampling_rate) |
|
inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate} |
|
logger.info("done loading") |
|
text, runtime = tqdm_generate(inputs, task=task, return_timestamps=return_timestamps, progress=progress) |
|
return text, runtime |
|
|
|
def _return_yt_html_embed(yt_url): |
|
video_id = yt_url.split("?v=")[-1] |
|
HTML_str = ( |
|
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' |
|
" </center>" |
|
) |
|
return HTML_str |
|
|
|
def download_yt_audio(yt_url, filename): |
|
info_loader = youtube_dl.YoutubeDL() |
|
try: |
|
info = info_loader.extract_info(yt_url, download=False) |
|
except youtube_dl.utils.DownloadError as err: |
|
raise gr.Error(str(err)) |
|
|
|
file_length = info["duration_string"] |
|
file_h_m_s = file_length.split(":") |
|
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s] |
|
if len(file_h_m_s) == 1: |
|
file_h_m_s.insert(0, 0) |
|
if len(file_h_m_s) == 2: |
|
file_h_m_s.insert(0, 0) |
|
|
|
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2] |
|
if file_length_s > YT_LENGTH_LIMIT_S: |
|
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S)) |
|
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s)) |
|
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.") |
|
|
|
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"} |
|
with youtube_dl.YoutubeDL(ydl_opts) as ydl: |
|
try: |
|
ydl.download([yt_url]) |
|
except youtube_dl.utils.ExtractorError as err: |
|
raise gr.Error(str(err)) |
|
|
|
def transcribe_youtube(yt_url, task, return_timestamps, progress=gr.Progress()): |
|
progress(0, desc="Loading audio file...") |
|
logger.info("loading youtube file...") |
|
html_embed_str = _return_yt_html_embed(yt_url) |
|
with tempfile.TemporaryDirectory() as tmpdirname: |
|
filepath = os.path.join(tmpdirname, "video.mp4") |
|
download_yt_audio(yt_url, filepath) |
|
|
|
with open(filepath, "rb") as f: |
|
inputs = f.read() |
|
|
|
inputs = ffmpeg_read(inputs, pipeline.feature_extractor.sampling_rate) |
|
inputs = {"array": inputs, "sampling_rate": pipeline.feature_extractor.sampling_rate} |
|
logger.info("done loading...") |
|
text, runtime = tqdm_generate(inputs, task=task, return_timestamps=return_timestamps, progress=progress) |
|
return html_embed_str, text, runtime |
|
|
|
microphone_chunked = gr.Interface( |
|
fn=transcribe_chunked_audio, |
|
inputs=[ |
|
gr.Audio(sources=["microphone"], type="filepath"), |
|
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), |
|
gr.Checkbox(value=False, label="Return timestamps"), |
|
], |
|
outputs=[ |
|
gr.Textbox(label="Transcription", show_copy_button=True), |
|
gr.Textbox(label="Transcription Time (s)"), |
|
], |
|
allow_flagging="never", |
|
title=title, |
|
description=description, |
|
article=article, |
|
) |
|
|
|
audio_chunked = gr.Interface( |
|
fn=transcribe_chunked_audio, |
|
inputs=[ |
|
gr.Audio(sources=["upload"], label="Audio file", type="filepath"), |
|
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), |
|
gr.Checkbox(value=False, label="Return timestamps"), |
|
], |
|
outputs=[ |
|
gr.Textbox(label="Transcription", show_copy_button=True), |
|
gr.Textbox(label="Transcription Time (s)"), |
|
], |
|
allow_flagging="never", |
|
title=title, |
|
description=description, |
|
article=article, |
|
) |
|
|
|
youtube = gr.Interface( |
|
fn=transcribe_youtube, |
|
inputs=[ |
|
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), |
|
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"), |
|
gr.Checkbox(value=False, label="Return timestamps"), |
|
], |
|
outputs=[ |
|
gr.HTML(label="Video"), |
|
gr.Textbox(label="Transcription", show_copy_button=True), |
|
gr.Textbox(label="Transcription Time (s)"), |
|
], |
|
allow_flagging="never", |
|
title=title, |
|
examples=[["https://www.youtube.com/watch?v=m8u-18Q0s7I", "transcribe", False]], |
|
cache_examples=False, |
|
description=description, |
|
article=article, |
|
) |
|
|
|
demo = gr.Blocks() |
|
|
|
with demo: |
|
gr.TabbedInterface([microphone_chunked, audio_chunked, youtube], ["Microphone", "Audio File", "YouTube"]) |
|
|
|
demo.queue(max_size=5) |
|
demo.launch(show_api=False) |
|
|