Spaces:
Sleeping
Sleeping
Sasha
commited on
Commit
•
1f09890
1
Parent(s):
d720be7
Initial version of the Evaluation Buddy -- currently most things are hardcoded (e.g. the dataset list), but the goal it to make it all compatible with the Hub!
Browse files
app.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from datasets import load_dataset_builder
|
3 |
+
from datasets import get_dataset_config_names
|
4 |
+
from os import listdir
|
5 |
+
from datasets import load_dataset, Dataset
|
6 |
+
from datasets_sql import query
|
7 |
+
import plotly.express as px
|
8 |
+
import numpy as np
|
9 |
+
import statistics
|
10 |
+
|
11 |
+
st.set_page_config(
|
12 |
+
page_title="Evaluation Buddy",
|
13 |
+
page_icon="./robot.png",
|
14 |
+
layout="wide",
|
15 |
+
)
|
16 |
+
|
17 |
+
st.title("Hugging Face Evaluation Buddy")
|
18 |
+
|
19 |
+
top_datasets= ['glue', 'super_glue', 'wikitext', 'imdb', 'squad', 'squad_es', \
|
20 |
+
'paws', 'librispeech_asr', 'wmt16', 'xnli', 'snli', 'ag_news', \
|
21 |
+
'anli', 'amazon_polarity', 'squad_v2', 'conll2003', 'red_caps', \
|
22 |
+
'common_voice', 'stsb_multi_mt', 'trec', 'tweet_eval', 'cosmos_qa',\
|
23 |
+
'sick', 'xsum', 'wikiann', 'yelp_polarity', 'hellaswag', 'piqa', \
|
24 |
+
'race', 'winogrande']
|
25 |
+
|
26 |
+
tasks= ['text-classification', 'question-answering-extractive', 'automatic-speech-recognition']
|
27 |
+
|
28 |
+
with st.sidebar.expander("Datasets", expanded=True):
|
29 |
+
dataset_name = st.selectbox(
|
30 |
+
f"Choose a dataset to evaluate on:",
|
31 |
+
sorted(top_datasets))
|
32 |
+
configs = get_dataset_config_names(dataset_name)
|
33 |
+
dataset_config = st.selectbox(
|
34 |
+
f"Choose a configuration of your dataset:",
|
35 |
+
configs)
|
36 |
+
dataset_builder = load_dataset_builder(dataset_name, dataset_config)
|
37 |
+
splits = [s for s in dataset_builder.info.splits]
|
38 |
+
dataset_split = st.selectbox(
|
39 |
+
f"Choose a dataset split:",
|
40 |
+
splits)
|
41 |
+
balanced_stdev = st.slider("Choose a standard deviation threshold for determining whether a dataset is balanced or not:", 0.00, 1.00, 0.20)
|
42 |
+
|
43 |
+
|
44 |
+
|
45 |
+
st.markdown("## Here is some information about your dataset:")
|
46 |
+
|
47 |
+
st.markdown("### Description")
|
48 |
+
|
49 |
+
st.markdown(dataset_builder.info.description)
|
50 |
+
st.markdown("For more information about this dataset, check out [its website](https://huggingface.co/datasets/"+dataset_name+")")
|
51 |
+
|
52 |
+
st.markdown("### Dataset-Specific Metrics")
|
53 |
+
if dataset_name in listdir('../datasets/metrics/'):
|
54 |
+
st.markdown("Great news! Your dataset has a dedicated metric for it! You can use it like this:")
|
55 |
+
code = ''' from datasets import load_metric
|
56 |
+
metric = load_metric('''+dataset+''', '''+config+''')'''
|
57 |
+
st.code(code, language='python')
|
58 |
+
dedicated_metric = True
|
59 |
+
else:
|
60 |
+
st.markdown("Your dataset doesn't have a dedicated metric, but that's ok!")
|
61 |
+
dedicated_metric = False
|
62 |
+
|
63 |
+
st.markdown("### Task-Specific Metrics")
|
64 |
+
|
65 |
+
try:
|
66 |
+
task = dataset_builder.info.task_templates[0].task
|
67 |
+
st.markdown("The task associated to it is: " + task)
|
68 |
+
if task == 'automatic-speech-recognition':
|
69 |
+
st.markdown('Automatic Speech Recognition has some dedicated metrics such as:')
|
70 |
+
st.markdown('[Word Error Rate](https://huggingface.co/metrics/wer)')
|
71 |
+
st.markdown('[Character Error Rate](https://huggingface.co/metrics/cer)')
|
72 |
+
else:
|
73 |
+
st.markdown("The task for your dataset doesn't have any dedicated metrics, but you can still use general ones!")
|
74 |
+
except:
|
75 |
+
st.markdown("The task for your dataset doesn't have any dedicated metrics, but you can still use general ones!")
|
76 |
+
|
77 |
+
|
78 |
+
#print(dataset_builder.info.task_templates)
|
79 |
+
#print(dataset_builder.info.features)
|
80 |
+
|
81 |
+
|
82 |
+
#st.markdown("### General Metrics")
|
83 |
+
|
84 |
+
|
85 |
+
|
86 |
+
#dataset = load_dataset(dataset_name, dataset_config, dataset_split)
|
87 |
+
#print(dataset_name, dataset_config, dataset_split)
|
88 |
+
|
89 |
+
#print(labels.head())
|
90 |
+
|
91 |
+
|
92 |
+
|
93 |
+
try:
|
94 |
+
num_classes = dataset_builder.info.features['label'].num_classes
|
95 |
+
dataset = load_dataset(dataset_name, split=dataset_split)
|
96 |
+
labels = query("SELECT COUNT(*) from dataset GROUP BY label").to_pandas()
|
97 |
+
labels = labels.rename(columns={"count_star()": "count"})
|
98 |
+
labels.index = dataset_builder.info.features['label'].names
|
99 |
+
st.markdown("### Labelled Metrics")
|
100 |
+
st.markdown("Your dataset has "+ str(dataset_builder.info.features['label'].num_classes) + " labels : " + ', '.join(dataset_builder.info.features['label'].names))
|
101 |
+
#TODO : figure out how to make a label plot
|
102 |
+
st.plotly_chart(px.pie(labels, values = "count", names = labels.index, width=800, height=400))
|
103 |
+
total = sum(c for c in labels['count'])
|
104 |
+
proportion = [c/total for c in labels['count']]
|
105 |
+
#proportion = [0.85, 0.15]
|
106 |
+
stdev_dataset= statistics.stdev(proportion)
|
107 |
+
if stdev_dataset <= balanced_stdev:
|
108 |
+
st.markdown("Since your dataset is well-balanced, you can look at using:")
|
109 |
+
st.markdown('[Accuracy](https://huggingface.co/metrics/accuracy)')
|
110 |
+
accuracy_code = '''from datasets import load_metric
|
111 |
+
metric = load_metric("accuracy")'''
|
112 |
+
st.code(accuracy_code, language='python')
|
113 |
+
|
114 |
+
else:
|
115 |
+
st.markdown("Since your dataset is not well-balanced, you can look at using:")
|
116 |
+
st.markdown('[F1 Score](https://huggingface.co/metrics/f1)')
|
117 |
+
accuracy_code = '''from datasets import load_metric
|
118 |
+
metric = load_metric("accuracy")'''
|
119 |
+
st.code(accuracy_code, language='python')
|
120 |
+
st.markdown('Since it takes into account both precision and recall, which works well to evaluate model performance on minority classes.')
|
121 |
+
except:
|
122 |
+
st.markdown("### Unsupervised Metrics")
|
123 |
+
st.markdown("Since dataset doesn't have any labels, so the metrics that you can use for evaluation are:")
|
124 |
+
st.markdown('[Perplexity](https://huggingface.co/metrics/perplexity)')
|
125 |
+
perplexity_code = '''from datasets import load_metric
|
126 |
+
metric = load_metric("perplexity")'''
|
127 |
+
st.code(perplexity_code, language='python')
|
128 |
+
st.markdown('If you choose a model that was trained on **' + dataset_name + '** and use it to compute perplexity on text generated by your model, this can help determine how similar the two are.')
|
robot.png
ADDED