|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") |
|
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium") |
|
|
|
def predict(input, history=[]): |
|
|
|
new_user_input_ids = tokenizer.encode(input + tokenizer.eos_token, return_tensors='pt') |
|
|
|
|
|
bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1) |
|
|
|
|
|
history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist() |
|
|
|
|
|
response = tokenizer.decode(history[0]).split("<|endoftext|>") |
|
response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)] |
|
return response, history |
|
|
|
import gradio as gr |
|
|
|
demo = gr.Blocks() |
|
|
|
with demo: |
|
with gr.Row(): |
|
output_chatbot = gr.outputs.Chatbot() |
|
output_state = gr.outputs.State() |
|
|
|
with gr.Row(): |
|
input_text = gr.inputs.Textbox(label="write some text") |
|
input_state = gr.inputs.State() |
|
|
|
submit_button = gr.Button("Send") |
|
|
|
submit_button.click(predict, inputs=[input_text, input_state], outputs=[output_chatbot, output_state]) |
|
|
|
demo.launch() |
|
|