Spaces:
Build error
Build error
# Copyright (c) Facebook, Inc. and its affiliates. | |
import atexit | |
import bisect | |
import gc | |
import json | |
import multiprocessing as mp | |
import time | |
from collections import deque | |
import cv2 | |
import numpy as np | |
import torch | |
from ape.engine.defaults import DefaultPredictor | |
from detectron2.data import MetadataCatalog | |
from detectron2.utils.video_visualizer import VideoVisualizer | |
from detectron2.utils.visualizer import ColorMode, Visualizer | |
def filter_instances(instances, metadata): | |
# return instances | |
keep = [] | |
keep_classes = [] | |
sorted_idxs = np.argsort(-instances.scores) | |
instances = instances[sorted_idxs] | |
for i in range(len(instances)): | |
instance = instances[i] | |
pred_class = instance.pred_classes | |
if pred_class >= len(metadata.thing_classes): | |
continue | |
keep.append(i) | |
keep_classes.append(pred_class) | |
return instances[keep] | |
def cuda_grabcut(img, masks, iter=5, gamma=50, iou_threshold=0.75): | |
gc.collect() | |
torch.cuda.empty_cache() | |
try: | |
import grabcut | |
except Exception as e: | |
print("*" * 60) | |
print("fail to import grabCut: ", e) | |
print("*" * 60) | |
return masks | |
GC = grabcut.GrabCut(iter) | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2BGRA) | |
tic_0 = time.time() | |
for i in range(len(masks)): | |
mask = masks[i] | |
if mask.sum() > 10 * 10: | |
pass | |
else: | |
continue | |
# ---------------------------------------------------------------- | |
fourmap = np.empty_like(mask, dtype=np.uint8) | |
fourmap[:, :] = 64 | |
fourmap[mask == 0] = 64 | |
fourmap[mask == 1] = 128 | |
# Compute segmentation | |
tic = time.time() | |
seg = GC.estimateSegmentationFromFourmap(img, fourmap, gamma) | |
toc = time.time() | |
print("Time elapsed in GrabCut segmentation: " + str(toc - tic)) | |
# ---------------------------------------------------------------- | |
seg = torch.tensor(seg, dtype=torch.bool) | |
iou = (mask & seg).sum() / (mask | seg).sum() | |
if iou > iou_threshold: | |
masks[i] = seg | |
if toc - tic_0 > 10: | |
break | |
return masks | |
def opencv_grabcut(img, masks, iter=5): | |
for i in range(len(masks)): | |
mask = masks[i] | |
# ---------------------------------------------------------------- | |
fourmap = np.empty_like(mask, dtype=np.uint8) | |
fourmap[:, :] = cv2.GC_PR_BGD | |
# fourmap[mask == 0] = cv2.GC_BGD | |
fourmap[mask == 0] = cv2.GC_PR_BGD | |
fourmap[mask == 1] = cv2.GC_PR_FGD | |
# fourmap[mask == 1] = cv2.GC_FGD | |
# Create GrabCut algo | |
bgd_model = np.zeros((1, 65), np.float64) | |
fgd_model = np.zeros((1, 65), np.float64) | |
seg = np.zeros_like(fourmap, dtype=np.uint8) | |
# Compute segmentation | |
tic = time.time() | |
seg, bgd_model, fgd_model = cv2.grabCut( | |
img, fourmap, None, bgd_model, fgd_model, iter, cv2.GC_INIT_WITH_MASK | |
) | |
toc = time.time() | |
print("Time elapsed in GrabCut segmentation: " + str(toc - tic)) | |
seg = np.where((seg == 2) | (seg == 0), 0, 1).astype("bool") | |
# ---------------------------------------------------------------- | |
seg = torch.tensor(seg, dtype=torch.bool) | |
iou = (mask & seg).sum() / (mask | seg).sum() | |
if iou > 0.75: | |
masks[i] = seg | |
if i > 10: | |
break | |
return masks | |
class VisualizationDemo(object): | |
def __init__(self, cfg, instance_mode=ColorMode.IMAGE, parallel=False, args=None): | |
""" | |
Args: | |
cfg (CfgNode): | |
instance_mode (ColorMode): | |
parallel (bool): whether to run the model in different processes from visualization. | |
Useful since the visualization logic can be slow. | |
""" | |
self.metadata = MetadataCatalog.get( | |
"__unused_" + "_".join([d for d in cfg.dataloader.train.dataset.names]) | |
) | |
self.metadata.thing_classes = [ | |
c | |
for d in cfg.dataloader.train.dataset.names | |
for c in MetadataCatalog.get(d).get("thing_classes", default=[]) | |
+ MetadataCatalog.get(d).get("stuff_classes", default=["thing"])[1:] | |
] | |
self.metadata.stuff_classes = [ | |
c | |
for d in cfg.dataloader.train.dataset.names | |
for c in MetadataCatalog.get(d).get("thing_classes", default=[]) | |
+ MetadataCatalog.get(d).get("stuff_classes", default=["thing"])[1:] | |
] | |
# self.metadata = MetadataCatalog.get( | |
# "__unused_ape_" + "_".join([d for d in cfg.dataloader.train.dataset.names]) | |
# ) | |
# self.metadata.thing_classes = [ | |
# c | |
# for d in ["coco_2017_train_panoptic_separated"] | |
# for c in MetadataCatalog.get(d).get("thing_classes", default=[]) | |
# + MetadataCatalog.get(d).get("stuff_classes", default=["thing"])[1:] | |
# ] | |
# self.metadata.stuff_classes = [ | |
# c | |
# for d in ["coco_2017_train_panoptic_separated"] | |
# for c in MetadataCatalog.get(d).get("thing_classes", default=[]) | |
# + MetadataCatalog.get(d).get("stuff_classes", default=["thing"])[1:] | |
# ] | |
self.cpu_device = torch.device("cpu") | |
self.instance_mode = instance_mode | |
self.parallel = parallel | |
if parallel: | |
num_gpu = torch.cuda.device_count() | |
self.predictor = AsyncPredictor(cfg, num_gpus=num_gpu) | |
else: | |
self.predictor = DefaultPredictor(cfg) | |
print(args) | |
def run_on_image( | |
self, | |
image, | |
text_prompt=None, | |
mask_prompt=None, | |
with_box=True, | |
with_mask=True, | |
with_sseg=True, | |
): | |
""" | |
Args: | |
image (np.ndarray): an image of shape (H, W, C) (in BGR order). | |
This is the format used by OpenCV. | |
Returns: | |
predictions (dict): the output of the model. | |
vis_output (VisImage): the visualized image output. | |
""" | |
if text_prompt: | |
text_list = [x.strip() for x in text_prompt.split(",")] | |
text_list = [x for x in text_list if len(x) > 0] | |
metadata = MetadataCatalog.get("__unused_ape_" + text_prompt) | |
metadata.thing_classes = text_list | |
metadata.stuff_classes = text_list | |
else: | |
metadata = self.metadata | |
vis_output = None | |
predictions = self.predictor(image, text_prompt, mask_prompt) | |
if "instances" in predictions: | |
predictions["instances"] = filter_instances( | |
predictions["instances"].to(self.cpu_device), metadata | |
) | |
# Convert image from OpenCV BGR format to Matplotlib RGB format. | |
image = image[:, :, ::-1] | |
visualizer = Visualizer(image, metadata, instance_mode=self.instance_mode) | |
vis_outputs = [] | |
if "panoptic_seg" in predictions and with_mask and with_sseg: | |
panoptic_seg, segments_info = predictions["panoptic_seg"] | |
vis_output = visualizer.draw_panoptic_seg_predictions( | |
panoptic_seg.to(self.cpu_device), segments_info | |
) | |
else: | |
if "sem_seg" in predictions and with_sseg: | |
# vis_output = visualizer.draw_sem_seg( | |
# predictions["sem_seg"].argmax(dim=0).to(self.cpu_device) | |
# ) | |
sem_seg = predictions["sem_seg"].to(self.cpu_device) | |
# sem_seg = opencv_grabcut(image, sem_seg, iter=10) | |
# sem_seg = cuda_grabcut(image, sem_seg > 0.5, iter=5, gamma=10, iou_threshold=0.1) | |
sem_seg = torch.cat((sem_seg, torch.ones_like(sem_seg[0:1, ...]) * 0.1), dim=0) | |
sem_seg = sem_seg.argmax(dim=0) | |
vis_output = visualizer.draw_sem_seg(sem_seg) | |
if "instances" in predictions and (with_box or with_mask): | |
instances = predictions["instances"].to(self.cpu_device) | |
if not with_box: | |
instances.remove("pred_boxes") | |
if not with_mask: | |
instances.remove("pred_masks") | |
if with_mask and False: | |
# instances.pred_masks = opencv_grabcut(image, instances.pred_masks, iter=10) | |
instances.pred_masks = cuda_grabcut( | |
image, instances.pred_masks, iter=5, gamma=10, iou_threshold=0.75 | |
) | |
vis_output = visualizer.draw_instance_predictions(predictions=instances) | |
# for i in range(len(instances)): | |
# visualizer = Visualizer(image, metadata, instance_mode=self.instance_mode) | |
# vis_outputs.append(visualizer.draw_instance_predictions(predictions=instances[i])) | |
elif "proposals" in predictions: | |
visualizer = Visualizer(image, None, instance_mode=self.instance_mode) | |
instances = predictions["proposals"].to(self.cpu_device) | |
instances.pred_boxes = instances.proposal_boxes | |
instances.scores = instances.objectness_logits | |
vis_output = visualizer.draw_instance_predictions(predictions=instances) | |
return predictions, vis_output, vis_outputs, metadata | |
def _frame_from_video(self, video): | |
while video.isOpened(): | |
success, frame = video.read() | |
if success: | |
yield frame | |
else: | |
break | |
def run_on_video(self, video): | |
""" | |
Visualizes predictions on frames of the input video. | |
Args: | |
video (cv2.VideoCapture): a :class:`VideoCapture` object, whose source can be | |
either a webcam or a video file. | |
Yields: | |
ndarray: BGR visualizations of each video frame. | |
""" | |
video_visualizer = VideoVisualizer(self.metadata, self.instance_mode) | |
def process_predictions(frame, predictions): | |
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
if "panoptic_seg" in predictions and False: | |
panoptic_seg, segments_info = predictions["panoptic_seg"] | |
vis_frame = video_visualizer.draw_panoptic_seg_predictions( | |
frame, panoptic_seg.to(self.cpu_device), segments_info | |
) | |
elif "instances" in predictions and False: | |
predictions = predictions["instances"].to(self.cpu_device) | |
vis_frame = video_visualizer.draw_instance_predictions(frame, predictions) | |
elif "sem_seg" in predictions and False: | |
vis_frame = video_visualizer.draw_sem_seg( | |
frame, predictions["sem_seg"].argmax(dim=0).to(self.cpu_device) | |
) | |
if "sem_seg" in predictions: | |
vis_frame = video_visualizer.draw_sem_seg( | |
frame, predictions["sem_seg"].argmax(dim=0).to(self.cpu_device) | |
) | |
frame = vis_frame.get_image() | |
if "instances" in predictions: | |
predictions = predictions["instances"].to(self.cpu_device) | |
predictions = filter_instances(predictions, self.metadata) | |
vis_frame = video_visualizer.draw_instance_predictions(frame, predictions) | |
# Converts Matplotlib RGB format to OpenCV BGR format | |
vis_frame = cv2.cvtColor(vis_frame.get_image(), cv2.COLOR_RGB2BGR) | |
return vis_frame, predictions | |
frame_gen = self._frame_from_video(video) | |
if self.parallel: | |
buffer_size = self.predictor.default_buffer_size | |
frame_data = deque() | |
for cnt, frame in enumerate(frame_gen): | |
frame_data.append(frame) | |
self.predictor.put(frame) | |
if cnt >= buffer_size: | |
frame = frame_data.popleft() | |
predictions = self.predictor.get() | |
yield process_predictions(frame, predictions) | |
while len(frame_data): | |
frame = frame_data.popleft() | |
predictions = self.predictor.get() | |
yield process_predictions(frame, predictions) | |
else: | |
for frame in frame_gen: | |
yield process_predictions(frame, self.predictor(frame)) | |
class AsyncPredictor: | |
""" | |
A predictor that runs the model asynchronously, possibly on >1 GPUs. | |
Because rendering the visualization takes considerably amount of time, | |
this helps improve throughput a little bit when rendering videos. | |
""" | |
class _StopToken: | |
pass | |
class _PredictWorker(mp.Process): | |
def __init__(self, cfg, task_queue, result_queue): | |
self.cfg = cfg | |
self.task_queue = task_queue | |
self.result_queue = result_queue | |
super().__init__() | |
def run(self): | |
predictor = DefaultPredictor(self.cfg) | |
while True: | |
task = self.task_queue.get() | |
if isinstance(task, AsyncPredictor._StopToken): | |
break | |
idx, data = task | |
result = predictor(data) | |
self.result_queue.put((idx, result)) | |
def __init__(self, cfg, num_gpus: int = 1): | |
""" | |
Args: | |
cfg (CfgNode): | |
num_gpus (int): if 0, will run on CPU | |
""" | |
num_workers = max(num_gpus, 1) | |
self.task_queue = mp.Queue(maxsize=num_workers * 3) | |
self.result_queue = mp.Queue(maxsize=num_workers * 3) | |
self.procs = [] | |
for gpuid in range(max(num_gpus, 1)): | |
cfg = cfg.clone() | |
cfg.defrost() | |
cfg.MODEL.DEVICE = "cuda:{}".format(gpuid) if num_gpus > 0 else "cpu" | |
self.procs.append( | |
AsyncPredictor._PredictWorker(cfg, self.task_queue, self.result_queue) | |
) | |
self.put_idx = 0 | |
self.get_idx = 0 | |
self.result_rank = [] | |
self.result_data = [] | |
for p in self.procs: | |
p.start() | |
atexit.register(self.shutdown) | |
def put(self, image): | |
self.put_idx += 1 | |
self.task_queue.put((self.put_idx, image)) | |
def get(self): | |
self.get_idx += 1 # the index needed for this request | |
if len(self.result_rank) and self.result_rank[0] == self.get_idx: | |
res = self.result_data[0] | |
del self.result_data[0], self.result_rank[0] | |
return res | |
while True: | |
# make sure the results are returned in the correct order | |
idx, res = self.result_queue.get() | |
if idx == self.get_idx: | |
return res | |
insert = bisect.bisect(self.result_rank, idx) | |
self.result_rank.insert(insert, idx) | |
self.result_data.insert(insert, res) | |
def __len__(self): | |
return self.put_idx - self.get_idx | |
def __call__(self, image): | |
self.put(image) | |
return self.get() | |
def shutdown(self): | |
for _ in self.procs: | |
self.task_queue.put(AsyncPredictor._StopToken()) | |
def default_buffer_size(self): | |
return len(self.procs) * 5 | |