Spaces:
Sleeping
Sleeping
File size: 5,847 Bytes
ea6c03c 808685d 03c0240 5212d99 03c0240 5212d99 b86652f 5212d99 808685d b86652f 808685d d2a4be4 808685d d2a4be4 808685d 5212d99 808685d 03c0240 3ccc6b5 03c0240 808685d 5212d99 808685d 3ccc6b5 808685d b86652f 808685d 03c0240 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 |
import gradio as gr
from ultralytics import YOLOv10
import supervision as sv
import spaces
from huggingface_hub import hf_hub_download
def download_models(model_id):
hf_hub_download("kadirnar/Yolov10", filename=f"{model_id}", local_dir=f"./")
return f"./{model_id}"
box_annotator = sv.BoxAnnotator()
category_dict = {
0: 'person', 1: 'bicycle', 2: 'car', 3: 'motorcycle', 4: 'airplane', 5: 'bus',
6: 'train', 7: 'truck', 8: 'boat', 9: 'traffic light', 10: 'fire hydrant',
11: 'stop sign', 12: 'parking meter', 13: 'bench', 14: 'bird', 15: 'cat',
16: 'dog', 17: 'horse', 18: 'sheep', 19: 'cow', 20: 'elephant', 21: 'bear',
22: 'zebra', 23: 'giraffe', 24: 'backpack', 25: 'umbrella', 26: 'handbag',
27: 'tie', 28: 'suitcase', 29: 'frisbee', 30: 'skis', 31: 'snowboard',
32: 'sports ball', 33: 'kite', 34: 'baseball bat', 35: 'baseball glove',
36: 'skateboard', 37: 'surfboard', 38: 'tennis racket', 39: 'bottle',
40: 'wine glass', 41: 'cup', 42: 'fork', 43: 'knife', 44: 'spoon', 45: 'bowl',
46: 'banana', 47: 'apple', 48: 'sandwich', 49: 'orange', 50: 'broccoli',
51: 'carrot', 52: 'hot dog', 53: 'pizza', 54: 'donut', 55: 'cake',
56: 'chair', 57: 'couch', 58: 'potted plant', 59: 'bed', 60: 'dining table',
61: 'toilet', 62: 'tv', 63: 'laptop', 64: 'mouse', 65: 'remote', 66: 'keyboard',
67: 'cell phone', 68: 'microwave', 69: 'oven', 70: 'toaster', 71: 'sink',
72: 'refrigerator', 73: 'book', 74: 'clock', 75: 'vase', 76: 'scissors',
77: 'teddy bear', 78: 'hair drier', 79: 'toothbrush'
}
@spaces.GPU(duration=200)
def yolov10_inference(image, model_id, image_size, conf_threshold, iou_threshold):
model_path = download_models(model_id)
model = YOLOv10(model_path)
results = model(source=image, imgsz=image_size, iou=iou_threshold, conf=conf_threshold, verbose=False)[0]
detections = sv.Detections.from_ultralytics(results)
labels = [
f"{category_dict[class_id]} {confidence:.2f}"
for class_id, confidence in zip(detections.class_id, detections.confidence)
]
annotated_image = box_annotator.annotate(image, detections=detections, labels=labels)
return annotated_image
def yolov10_inference_multi(image, image_size, conf_threshold, iou_threshold):
yolov10n_image = yolov10_inference(image, "yolov10n.pt", image_size, conf_threshold, iou_threshold)
yolov10s_image = yolov10_inference(image, "yolov10s.pt", image_size, conf_threshold, iou_threshold)
yolov10m_image = yolov10_inference(image, "yolov10m.pt", image_size, conf_threshold, iou_threshold)
yolov10b_image = yolov10_inference(image, "yolov10b.pt", image_size, conf_threshold, iou_threshold)
yolov10l_image = yolov10_inference(image, "yolov10l.pt", image_size, conf_threshold, iou_threshold)
yolov10x_image = yolov10_inference(image, "yolov10x.pt", image_size, conf_threshold, iou_threshold)
return yolov10n_image, yolov10s_image, yolov10m_image, yolov10b_image, yolov10l_image, yolov10x_image
def app():
with gr.Blocks():
with gr.Row():
with gr.Column():
image = gr.Image(type="pil", label="Image")
output_image_l = gr.Image(type="pil", label="yolov10l")
output_image_x = gr.Image(type="pil", label="yolov10x")
image_size = gr.Slider(
label="Image Size",
minimum=320,
maximum=1280,
step=32,
value=640,
)
conf_threshold = gr.Slider(
label="Confidence Threshold",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.25,
)
iou_threshold = gr.Slider(
label="IoU Threshold",
minimum=0.1,
maximum=1.0,
step=0.1,
value=0.45,
)
yolov10_infer = gr.Button(value="Detect Objects")
with gr.Column():
output_image_n = gr.Image(type="pil", label="yolov10n")
output_image_s = gr.Image(type="pil", label="yolov10s")
output_image_m = gr.Image(type="pil", label="yolov10m")
output_image_b = gr.Image(type="pil", label="yolov10b")
yolov10_infer.click(
fn=yolov10_inference_multi,
inputs=[
image,
image_size,
conf_threshold,
iou_threshold,
],
outputs=[output_image_n, output_image_s, output_image_m, output_image_b, output_image_l, output_image_x],
)
gr.Examples(
examples=[
[
"bridge_people.jpg",
640,
0.25,
0.45,
],
[
"ships.jpg",
640,
0.25,
0.45,
],
[
"dogs.jpg",
640,
0.25,
0.45,
],
],
fn=yolov10_inference_multi,
inputs=[
image,
image_size,
conf_threshold,
iou_threshold,
],
outputs=[output_image_n, output_image_s, output_image_m, output_image_b, output_image_l, output_image_x],
cache_examples=True,
)
gradio_app = gr.Blocks()
with gradio_app:
gr.HTML(
"""
<h1 style='text-align: center'>
YOLOv10 - Comparison of Models
</h1>
""")
with gr.Row():
with gr.Column():
app()
gradio_app.launch(debug=True)
|