import cv2 import numpy as np import gradio as gr import onnxruntime as rt from huggingface_hub import hf_hub_download def predict(img): img = img.astype(np.float32) / 255 s = 768 h, w = img.shape[:-1] h, w = (s, int(s * w / h)) if h > w else (int(s * h / w), s) ph, pw = s - h, s - w img_input = np.zeros([s, s, 3], dtype=np.float32) img_input[ph // 2:ph // 2 + h, pw // 2:pw // 2 + w] = cv2.resize(img, (w, h)) img_input = np.transpose(img_input, (2, 0, 1)) img_input = img_input[np.newaxis, :] pred = model.run(None, {"img": img_input})[0].item() return pred if __name__ == "__main__": model_path = hf_hub_download(repo_id="skytnt/anime-aesthetic", filename="model.onnx") model = rt.InferenceSession(model_path, providers=['CPUExecutionProvider']) examples = [[f"examples/{x:02d}.jpg"] for x in range(0, 2)] app = gr.Interface(predict, gr.Image(label="input image"), gr.Number(label="score"),title="Anime Aesthetic Predict", description='![Visitors](https://api.visitorbadge.io/api/visitors?path=skytnt.anime-aesthetic-predict&countColor=%23263759&style=flat&labelStyle=lower)', allow_flagging="never", examples=examples, cache_examples=False) app.launch()