File size: 9,801 Bytes
d40d29c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Script to perform buffered inference using RNNT models.

Buffered inference is the primary form of audio transcription when the audio segment is longer than 20-30 seconds.
This is especially useful for models such as Conformers, which have quadratic time and memory scaling with
audio duration.

The difference between streaming and buffered inference is the chunk size (or the latency of inference).
Buffered inference will use large chunk sizes (5-10 seconds) + some additional buffer for context.
Streaming inference will use small chunk sizes (0.1 to 0.25 seconds) + some additional buffer for context.

# Middle Token merge algorithm

python speech_to_text_buffered_infer_rnnt.py \
    model_path=null \
    pretrained_name=null \
    audio_dir="<remove or path to folder of audio files>" \
    dataset_manifest="<remove or path to manifest>" \
    output_filename="<remove or specify output filename>" \
    total_buffer_in_secs=4.0 \
    chunk_len_in_secs=1.6 \
    model_stride=4 \
    batch_size=32

# Longer Common Subsequence (LCS) Merge algorithm

python speech_to_text_buffered_infer_rnnt.py \
    model_path=null \
    pretrained_name=null \
    audio_dir="<remove or path to folder of audio files>" \
    dataset_manifest="<remove or path to manifest>" \
    output_filename="<remove or specify output filename>" \
    total_buffer_in_secs=4.0 \
    chunk_len_in_secs=1.6 \
    model_stride=4 \
    batch_size=32 \
    merge_algo="lcs" \
    lcs_alignment_dir=<OPTIONAL: Some path to store the LCS alignments> 

# NOTE:
    You can use `DEBUG=1 python speech_to_text_buffered_infer_ctc.py ...` to print out the
    predictions of the model, and ground-truth text if presents in manifest.
"""
import copy
import glob
import math
import os
from dataclasses import dataclass, is_dataclass
from typing import Optional

import torch
from omegaconf import OmegaConf, open_dict

from nemo.collections.asr.parts.utils.streaming_utils import (
    BatchedFrameASRRNNT,
    LongestCommonSubsequenceBatchedFrameASRRNNT,
)
from nemo.collections.asr.parts.utils.transcribe_utils import (
    compute_output_filename,
    get_buffered_pred_feat_rnnt,
    setup_model,
    write_transcription,
)
from nemo.core.config import hydra_runner
from nemo.utils import logging

can_gpu = torch.cuda.is_available()


@dataclass
class TranscriptionConfig:
    # Required configs
    model_path: Optional[str] = None  # Path to a .nemo file
    pretrained_name: Optional[str] = None  # Name of a pretrained model
    audio_dir: Optional[str] = None  # Path to a directory which contains audio files
    dataset_manifest: Optional[str] = None  # Path to dataset's JSON manifest

    # General configs
    output_filename: Optional[str] = None
    batch_size: int = 32
    num_workers: int = 0
    append_pred: bool = False  # Sets mode of work, if True it will add new field transcriptions.
    pred_name_postfix: Optional[str] = None  # If you need to use another model name, rather than standard one.

    # Chunked configs
    chunk_len_in_secs: float = 1.6  # Chunk length in seconds
    total_buffer_in_secs: float = 4.0  # Length of buffer (chunk + left and right padding) in seconds
    model_stride: int = 8  # Model downsampling factor, 8 for Citrinet models and 4 for Conformer models",

    # Set `cuda` to int to define CUDA device. If 'None', will look for CUDA
    # device anyway, and do inference on CPU only if CUDA device is not found.
    # If `cuda` is a negative number, inference will be on CPU only.
    cuda: Optional[int] = None
    audio_type: str = "wav"

    # Recompute model transcription, even if the output folder exists with scores.
    overwrite_transcripts: bool = True

    # Decoding configs
    max_steps_per_timestep: int = 5  #'Maximum number of tokens decoded per acoustic timestep'
    stateful_decoding: bool = False  # Whether to perform stateful decoding

    # Merge algorithm for transducers
    merge_algo: Optional[str] = 'middle'  # choices=['middle', 'lcs'], choice of algorithm to apply during inference.
    lcs_alignment_dir: Optional[str] = None  # Path to a directory to store LCS algo alignments


@hydra_runner(config_name="TranscriptionConfig", schema=TranscriptionConfig)
def main(cfg: TranscriptionConfig) -> TranscriptionConfig:
    logging.info(f'Hydra config: {OmegaConf.to_yaml(cfg)}')
    torch.set_grad_enabled(False)

    if is_dataclass(cfg):
        cfg = OmegaConf.structured(cfg)

    if cfg.model_path is None and cfg.pretrained_name is None:
        raise ValueError("Both cfg.model_path and cfg.pretrained_name cannot be None!")
    if cfg.audio_dir is None and cfg.dataset_manifest is None:
        raise ValueError("Both cfg.audio_dir and cfg.dataset_manifest cannot be None!")

    filepaths = None
    manifest = cfg.dataset_manifest
    if cfg.audio_dir is not None:
        filepaths = list(glob.glob(os.path.join(cfg.audio_dir, f"**/*.{cfg.audio_type}"), recursive=True))
        manifest = None  # ignore dataset_manifest if audio_dir and dataset_manifest both presents

    # setup GPU
    if cfg.cuda is None:
        if torch.cuda.is_available():
            device = [0]  # use 0th CUDA device
            accelerator = 'gpu'
        else:
            device = 1
            accelerator = 'cpu'
    else:
        device = [cfg.cuda]
        accelerator = 'gpu'
    map_location = torch.device('cuda:{}'.format(device[0]) if accelerator == 'gpu' else 'cpu')
    logging.info(f"Inference will be done on device : {device}")

    asr_model, model_name = setup_model(cfg, map_location)

    model_cfg = copy.deepcopy(asr_model._cfg)
    OmegaConf.set_struct(model_cfg.preprocessor, False)
    # some changes for streaming scenario
    model_cfg.preprocessor.dither = 0.0
    model_cfg.preprocessor.pad_to = 0

    if model_cfg.preprocessor.normalize != "per_feature":
        logging.error("Only EncDecRNNTBPEModel models trained with per_feature normalization are supported currently")

    # Disable config overwriting
    OmegaConf.set_struct(model_cfg.preprocessor, True)

    # Compute output filename
    cfg = compute_output_filename(cfg, model_name)

    # if transcripts should not be overwritten, and already exists, skip re-transcription step and return
    if not cfg.overwrite_transcripts and os.path.exists(cfg.output_filename):
        logging.info(
            f"Previous transcripts found at {cfg.output_filename}, and flag `overwrite_transcripts`"
            f"is {cfg.overwrite_transcripts}. Returning without re-transcribing text."
        )
        return cfg

    asr_model.freeze()
    asr_model = asr_model.to(asr_model.device)

    # Change Decoding Config
    decoding_cfg = asr_model.cfg.decoding
    with open_dict(decoding_cfg):
        if cfg.stateful_decoding:
            decoding_cfg.strategy = "greedy"
        else:
            decoding_cfg.strategy = "greedy_batch"
        decoding_cfg.preserve_alignments = True  # required to compute the middle token for transducers.
        decoding_cfg.fused_batch_size = -1  # temporarily stop fused batch during inference.

    asr_model.change_decoding_strategy(decoding_cfg)

    feature_stride = model_cfg.preprocessor['window_stride']
    model_stride_in_secs = feature_stride * cfg.model_stride
    total_buffer = cfg.total_buffer_in_secs
    chunk_len = float(cfg.chunk_len_in_secs)

    tokens_per_chunk = math.ceil(chunk_len / model_stride_in_secs)
    mid_delay = math.ceil((chunk_len + (total_buffer - chunk_len) / 2) / model_stride_in_secs)
    logging.info(f"tokens_per_chunk is {tokens_per_chunk}, mid_delay is {mid_delay}")

    if cfg.merge_algo == 'middle':
        frame_asr = BatchedFrameASRRNNT(
            asr_model=asr_model,
            frame_len=chunk_len,
            total_buffer=cfg.total_buffer_in_secs,
            batch_size=cfg.batch_size,
            max_steps_per_timestep=cfg.max_steps_per_timestep,
            stateful_decoding=cfg.stateful_decoding,
        )

    elif cfg.merge_algo == 'lcs':
        frame_asr = LongestCommonSubsequenceBatchedFrameASRRNNT(
            asr_model=asr_model,
            frame_len=chunk_len,
            total_buffer=cfg.total_buffer_in_secs,
            batch_size=cfg.batch_size,
            max_steps_per_timestep=cfg.max_steps_per_timestep,
            stateful_decoding=cfg.stateful_decoding,
            alignment_basepath=cfg.lcs_alignment_dir,
        )
        # Set the LCS algorithm delay.
        frame_asr.lcs_delay = math.floor(((total_buffer - chunk_len)) / model_stride_in_secs)

    else:
        raise ValueError("Invalid choice of merge algorithm for transducer buffered inference.")

    hyps = get_buffered_pred_feat_rnnt(
        asr=frame_asr,
        tokens_per_chunk=tokens_per_chunk,
        delay=mid_delay,
        model_stride_in_secs=model_stride_in_secs,
        batch_size=cfg.batch_size,
        manifest=manifest,
        filepaths=filepaths,
    )

    output_filename = write_transcription(hyps, cfg, model_name, filepaths=filepaths, compute_langs=False)
    logging.info(f"Finished writing predictions to {output_filename}!")

    return cfg


if __name__ == '__main__':
    main()  # noqa pylint: disable=no-value-for-parameter