|
import gradio as gr |
|
import numpy as np |
|
import os |
|
import datetime |
|
import torch |
|
import soundfile |
|
from wavmark.utils import file_reader |
|
import wavmark |
|
|
|
def my_read_file(audio_path, max_second, default_sr=16000): |
|
signal, sr, audio_length_second = file_reader.read_as_single_channel_16k(audio_path, default_sr) |
|
if audio_length_second > max_second: |
|
signal = signal[0:default_sr * max_second] |
|
audio_length_second = max_second |
|
return signal, sr, audio_length_second |
|
|
|
def add_watermark(audio_path, watermark_text, max_second_encode=60): |
|
assert len(watermark_text) == 16 |
|
watermark_npy = np.array([int(i) for i in watermark_text]) |
|
signal, sr, audio_length_second = my_read_file(audio_path, max_second_encode) |
|
watermarked_signal, _ = wavmark.encode_watermark(model, signal, watermark_npy, show_progress=False) |
|
tmp_file_name = datetime.datetime.now().strftime('%Y-%m-%d_%H-%M-%S') + "_" + watermark_text + ".wav" |
|
tmp_file_path = '/tmp/' + tmp_file_name |
|
soundfile.write(tmp_file_path, watermarked_signal, sr) |
|
return tmp_file_path |
|
|
|
def decode_watermark(audio_path, max_second_decode=30): |
|
assert os.path.exists(audio_path) |
|
signal, sr, audio_length_second = my_read_file(audio_path, max_second_decode) |
|
payload_decoded, _ = wavmark.decode_watermark(model, signal, show_progress=False) |
|
if payload_decoded is None: |
|
return "No Watermark" |
|
return "".join([str(i) for i in payload_decoded]) |
|
|
|
def create_default_value(len_start_bit=16): |
|
def_val_npy = np.random.choice([0, 1], size=32 - len_start_bit) |
|
return "".join([str(i) for i in def_val_npy]) |
|
|
|
def main(): |
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
gr.Markdown("# Audio WaterMarking") |
|
with gr.Row(): |
|
gr.Markdown("You can upload an audio file and encode a custom 16-bit watermark or perform decoding from a watermarked audio. See [WaveMark toolkit](https://github.com/wavmark/wavmark) for further details.") |
|
|
|
with gr.Row(): |
|
audio_file = gr.Audio(label="Upload Audio", type="filepath") |
|
action = gr.Radio(["Add Watermark", "Decode Watermark"], label="Select Action") |
|
watermark_text = gr.Textbox(label="The watermark (0, 1 list of length-16):", value=create_default_value()) |
|
submit_button = gr.Button("Submit") |
|
|
|
with gr.Row(): |
|
output = gr.Audio(label="Processed Audio") |
|
decode_output = gr.Textbox(label="Decoded Watermark") |
|
|
|
def process_audio(audio_file, action, watermark_text): |
|
if action == "Add Watermark" and audio_file: |
|
return add_watermark(audio_file, watermark_text), None |
|
elif action == "Decode Watermark" and audio_file: |
|
return None, decode_watermark(audio_file) |
|
else: |
|
return None, None |
|
|
|
submit_button.click(process_audio, inputs=[audio_file, action, watermark_text], outputs=[output, decode_output]) |
|
|
|
demo.launch() |
|
|
|
if __name__ == "__main__": |
|
default_sr = 16000 |
|
max_second_encode = 60 |
|
max_second_decode = 30 |
|
len_start_bit = 16 |
|
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') |
|
model = wavmark.load_model().to(device) |
|
main() |
|
|