Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
from huggingface_hub import ModelCard, HfApi | |
from compliance_checks import ( | |
ComplianceSuite, | |
ComplianceCheck, | |
IntendedPurposeCheck, | |
GeneralLimitationsCheck, | |
ComputationalRequirementsCheck, | |
EvaluationCheck, | |
) | |
hf_writer = gr.HuggingFaceDatasetSaver( | |
os.getenv('HUGGING_FACE_HUB_TOKEN'), | |
dataset_name="society-ethics/model-card-regulatory-check-flags", | |
private=True | |
) | |
hf_api = HfApi() | |
checks = [ | |
IntendedPurposeCheck(), | |
GeneralLimitationsCheck(), | |
ComputationalRequirementsCheck(), | |
EvaluationCheck(), | |
] | |
suite = ComplianceSuite(checks=checks) | |
def status_emoji(status: bool): | |
return "✅" if status else "🛑" | |
def search_for_models(query: str): | |
if query.strip() == "": | |
return examples, ",".join([e[0] for e in examples]) | |
models = [m.id for m in list(iter(hf_api.list_models(search=query, limit=10)))] | |
model_samples = [[m] for m in models] | |
models_text = ",".join(models) | |
return model_samples, models_text | |
def load_model_card(index, options_string: str): | |
options = options_string.split(",") | |
model_id = options[index] | |
card = ModelCard.load(repo_id_or_path=model_id).content | |
return card | |
def run_compliance_check(model_card: str): | |
results = suite.run(model_card) | |
return [ | |
*[gr.Accordion(label=f"{r.name} - {status_emoji(r.status)}", open=not r.status) for r in results], | |
*[gr.Markdown(value=r.to_string()) for r in results], | |
] | |
def fetch_and_run_compliance_check(model_id: str): | |
model_card = ModelCard.load(repo_id_or_path=model_id).content | |
return run_compliance_check(model_card=model_card) | |
def compliance_result(compliance_check: ComplianceCheck): | |
accordion = gr.Accordion(label=f"{compliance_check.name}", open=False) | |
description = gr.Markdown("Run an evaluation to see results...") | |
return accordion, description | |
def read_file(file_obj): | |
with open(file_obj.name) as f: | |
model_card = f.read() | |
return model_card | |
model_card_box = gr.TextArea(label="Model Card") | |
# Have to destructure everything since I need to delay rendering. | |
col = gr.Column() | |
tab = gr.Tab(label="Results") | |
col2 = gr.Column() | |
compliance_results = [compliance_result(c) for c in suite.checks] | |
compliance_accordions = [c[0] for c in compliance_results] | |
compliance_descriptions = [c[1] for c in compliance_results] | |
examples = [ | |
["bigscience/bloom"], | |
["roberta-base"], | |
["openai/clip-vit-base-patch32"], | |
["distilbert-base-cased-distilled-squad"], | |
] | |
with gr.Blocks(css="""\ | |
#file-upload .boundedheight { | |
max-height: 100px; | |
} | |
code { | |
overflow: scroll; | |
} | |
""") as demo: | |
gr.Markdown("""\ | |
# RegCheck AI | |
This Space matches information in [model cards](https://huggingface.co/docs/hub/model-cards) to \ | |
regulatory compliance descriptions in the \ | |
[EU AI Act](https://eur-lex.europa.eu/eli/reg/2024/1689/oj)*. | |
This is a **prototype** to explore the feasibility of automatic checks for compliance, and is limited to specific \ | |
provisions of Article 13 of the Act, “Transparency and provision of information to deployers”. \ | |
**Please note: this is research work and NOT a commercial or legal product.** \ | |
\* RegCheck AI was built on the 2021 EU AI Act [proposal](https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A52021PC0206). | |
""") | |
with gr.Accordion(label="Instructions", open=True): | |
gr.Markdown(""" | |
To check a model card, first load it by doing any one of the following: | |
- If the model is on the Hugging Face Hub, search for a model and select it from the results. | |
- If you have the model card on your computer as a Markdown file, select the "Upload your own card" tab and \ | |
click "Upload a Markdown file". | |
- Paste your model card's text directly into the "Model Card" text area. | |
""") | |
with gr.Accordion(label="Limitations", open=False): | |
gr.Markdown(""" | |
This tool should be treated as a Proof Of Concept, and is not designed for production-level use. | |
- This is currently designed to only work on **English** model cards. | |
- This tool relies on a very strict model card schema, which may be different from your model card. | |
- Only material in the main card body is considered – any data in the YAML frontmatter is disregarded. | |
- If your model card contains any HTML fragments, this tool might not be able to read your model card. | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Tab(label="Load a card from the 🤗 Hugging Face Hub"): | |
with gr.Row(): | |
model_id_search = gr.Text(label="Model ID") | |
search_results_text = gr.Text(visible=False, value=",".join([e[0] for e in examples])) | |
search_results_index = gr.Dataset( | |
label="Search Results", | |
components=[model_id_search], | |
samples=examples, | |
type="index", | |
) | |
model_id_search.change( | |
fn=search_for_models, | |
inputs=[model_id_search], | |
outputs=[search_results_index, search_results_text] | |
) | |
with gr.Tab(label="Upload your own card"): | |
file = gr.UploadButton(label="Upload a Markdown file", elem_id="file-upload") | |
# TODO: Bug – uploading more than once doesn't trigger the function? Gradio bug? | |
file.upload( | |
fn=read_file, | |
inputs=[file], | |
outputs=[model_card_box] | |
) | |
model_card_box.render() | |
with col.render(): | |
with tab.render(): | |
with col2.render(): | |
for a, d in compliance_results: | |
with a.render(): | |
d.render() | |
flag = gr.Button(value="Disagree with the result? Click here to flag it! 🚩") | |
flag_message = gr.Text( | |
show_label=False, | |
visible=False, | |
value="Thank you for flagging this! We'll use your report to improve the tool 🤗" | |
) | |
search_results_index.click( | |
fn=load_model_card, | |
inputs=[search_results_index, search_results_text], | |
outputs=[model_card_box] | |
) | |
model_card_box.change( | |
fn=run_compliance_check, | |
inputs=[model_card_box], | |
outputs=[*compliance_accordions, *compliance_descriptions] | |
) | |
flag.click( | |
fn=lambda x: hf_writer.flag(flag_data=[x]) and gr.Text.update(visible=True), | |
inputs=[model_card_box], | |
outputs=[flag_message] | |
) | |
hf_writer.setup( | |
components=[model_card_box], | |
flagging_dir="flagged" | |
) | |
demo.launch() | |