open-moe-llm-leaderboard / src /backend /hflm_with_measurement.py
chivier's picture
sync from github
fe8e6f7
import copy
import os
from datetime import timedelta
import sys
from time import time
from pathlib import Path
from typing import List, Literal, Optional, Tuple, Union
import torch
import torch.nn.functional as F
import transformers
from accelerate import (
Accelerator,
DistributedType,
InitProcessGroupKwargs,
find_executable_batch_size,
)
from packaging import version
from peft import PeftModel
from peft import __version__ as PEFT_VERSION
from tqdm import tqdm
from transformers.models.auto.modeling_auto import (
MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
)
from transformers import TextStreamer
from transformers.models.dbrx.modeling_dbrx import DbrxExpertGLU
from lm_eval import utils
from lm_eval.api.instance import Instance
from lm_eval.api.model import TemplateLM
from lm_eval.api.registry import register_model
from lm_eval.models.utils import (
Collator,
clear_torch_cache,
get_dtype,
pad_and_concat,
stop_sequences_criteria,
)
from lm_eval.models.huggingface import HFLM
from src.utils import get_gpu_details, get_peak_bw, transfer_precision2bytes, get_peak_flops
from src.submission.check_validity import get_model_size
from src.envs import API
class StopWatch(TextStreamer):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.start_prefilling = None
self.prefilling_time = None
self.start_decoding = None
self.decoding_time = None
self.decoding_iterations = 0
def put(self, value):
if self.start_prefilling is None:
self.start_prefilling = time()
return
elif self.prefilling_time is None:
self.prefilling_time = time() - self.start_prefilling
self.start_decoding = time()
self.decoding_iterations += 1
return
def end(self):
if self.decoding_time is None and self.start_decoding is not None:
self.decoding_time = time() - self.start_decoding
return
class HFLMWithMeasurement(HFLM):
def __init__(self, **kwargs):
super().__init__(**kwargs)
self.pretrained = kwargs.get("pretrained", None)
self.revision = kwargs.get("revision", None)
self.precision = kwargs.get("dtype", None)
self.num_gpus = None
def _detect_num_gpus_used(self):
if self.num_gpus is not None:
return self.num_gpus
gpus = []
for p in self.model.parameters():
if p.device.type == "cuda":
gpus.append(p.device.index)
self.num_gpus = len(set(gpus))
return self.num_gpus
def _loglikelihood_tokens(
self,
requests: List[Tuple[Tuple[str, str], List[int], List[int]]],
disable_tqdm: bool = False,
override_bs: int = None,
) -> List[Tuple[float, bool]]:
# TODO: implement some kind of efficient-request-middleware that lumps together requests with the same context
res = []
def _collate(req: Tuple[Tuple[str, str], List[int], List[int]]):
"""Defines the key for the sorted method"""
# the negative sign on len(toks) sorts descending - this has a few advantages:
# - time estimates will always be over not underestimates, which is more useful for planning
# - to know the size of a batch when going through the list, you know the first one is always the batch
# padded context length. this is useful to simplify the batching logic and more importantly to make
# automatic adaptive batches much much easier to implement
# - any OOMs will happen right away rather than near the end
toks = req[1] + req[2]
return -len(toks), tuple(toks)
def _lookup_one_token_cont(req: Tuple[Tuple[str, str], List[int], List[int]]):
"""Defines the key to group and lookup one-token continuations"""
# Use with group_by="contexts" (optional)"
# allows for the creation of a lookup, so we can reuse logits in case of one-token continuations.
# speeds up some multiple-choice tasks proportionally to the number of choices.
# groups requests by context+continuation[:-1] and infer on one request/group.
return req[-2] + req[-1][:-1]
re_ord = Collator(
requests,
sort_fn=_collate,
group_by="contexts"
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
and self.logits_cache
else None,
group_fn=_lookup_one_token_cont,
)
# automatic (variable) batch size detection for vectorization
# pull longest context sample from request
n_reordered_requests = len(re_ord)
batch_size = (
self.batch_size
if self.batch_size != "auto"
else override_bs
if override_bs is not None
else 0
)
batch_fn = (
self._batch_scheduler
if self.batch_size == "auto"
and n_reordered_requests > 0
and not override_bs
else None
)
chunks = re_ord.get_batched(n=batch_size, batch_fn=batch_fn)
pbar = tqdm(
total=len(requests),
disable=(disable_tqdm or (self.rank != 0)),
desc="Running loglikelihood requests",
)
for chunk in chunks:
inps = []
cont_toks_list = []
inplens = []
conts = []
encoder_attns = []
padding_len_inp = None
padding_len_cont = None
# because vectorizing is annoying, we first convert each (context, continuation) pair to padded
# tensors, then we pack them together into a batch, call the model, and then pick it all apart
# again because vectorizing is annoying
for _, context_enc, continuation_enc in chunk:
# sanity check
assert len(context_enc) > 0
assert len(continuation_enc) > 0
assert len(continuation_enc) <= self.max_length
# how this all works (illustrated on a causal decoder-only setup):
# CTX CONT
# inp 0 1 2 3|4 5 6 7 8 9 <- last token is deleted by inp[:, :-1]
# model \ \
# logits 1 2 3|4 5 6 7 8 9 <- the ctx half gets tossed out by the
# cont_toks 4 5 6 7 8 9 [:, -len(continuation_enc):, :self.vocab_size] slice
# when too long to fit in context, truncate from the left
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
inp = torch.tensor(
(context_enc + continuation_enc)[-(self.max_length + 1) :][:-1],
dtype=torch.long,
device=self.device,
)
(inplen,) = inp.shape
elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
inp = torch.tensor(
(context_enc)[-self.max_length :],
dtype=torch.long,
device=self.device,
)
(inplen,) = inp.shape
# build encoder attn masks
encoder_attns.append(torch.ones_like(inp))
cont = torch.tensor(
(continuation_enc)[-self.max_length :],
# TODO: left-shift these?
# TODO: our code assumes we never end up truncating conts for either model type
dtype=torch.long,
device=self.device,
)
(contlen,) = cont.shape
conts.append(cont)
padding_len_cont = (
max(padding_len_cont, contlen)
if padding_len_cont is not None
else contlen
)
padding_len_inp = (
max(padding_len_inp, inplen)
if padding_len_inp is not None
else inplen
)
inps.append(inp) # [1, inp_length]
cont_toks_list.append(continuation_enc)
inplens.append(inplen)
# create encoder attn mask and batched conts, if seq2seq
call_kwargs = {}
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
batched_inps = pad_and_concat(
padding_len_inp, inps, padding_side="right"
) # [batch, padding_len_inp]
elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
# TODO: left-pad encoder inps and mask?
batched_inps = pad_and_concat(
padding_len_inp, inps
) # [batch, padding_len_inp]
batched_conts = pad_and_concat(
padding_len_cont, conts
) # [batch, padding_len_cont]
batched_encoder_mask = pad_and_concat(
padding_len_inp, encoder_attns
) # [batch, padding_len_inp]
call_kwargs = {
"attn_mask": batched_encoder_mask,
"labels": batched_conts,
}
start = time()
intermediate_res = self._model_call(batched_inps, **call_kwargs)
end = time()
multi_logits = F.log_softmax(
intermediate_res , dim=-1
) # [batch, padding_length (inp or cont), vocab]
per_sample_time = (end - start) / len(multi_logits)
for (request_str, ctx_tokens, _), logits, inplen, cont_toks in zip(
chunk, multi_logits, inplens, cont_toks_list
):
# Slice to original seq length
contlen = len(cont_toks)
# take only logits in the continuation
# (discard context toks if decoder-only ; discard right-padding)
# also discards + checks for "virtual tokens" in the causal LM's input window
# from prompt/prefix tuning tokens, if applicable
ctx_len = (
inplen + (logits.shape[0] - padding_len_inp)
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM
else None
)
logits = self._select_cont_toks(logits, contlen=contlen, inplen=ctx_len)
logits = logits.unsqueeze(0) # [1, seq, vocab]
# Check if per-token argmax is exactly equal to continuation
greedy_tokens = logits.argmax(dim=-1)
# check for one-token continuation cache hits.
# noop in case group_by != "contexts" or no cache hit and returns the
# original args. Otherwise, expands the logits batch dimension and yields each
# batch along with matching continuation tokens and prompt strings.
# logits -> [1, seq, vocab]
for request_str, cont_toks, logits in re_ord.get_cache(
req_str=request_str,
cxt_toks=ctx_tokens,
cont_toks=cont_toks,
logits=logits,
):
cont_toks = torch.tensor(
cont_toks, dtype=torch.long, device=self.device
).unsqueeze(0) # [1, seq]
max_equal = (greedy_tokens == cont_toks).all()
# Obtain log-probs at the corresponding continuation token indices
# last_token_slice = logits[:, -1, :].squeeze(0).tolist()
logits = torch.gather(logits, 2, cont_toks.unsqueeze(-1)).squeeze(
-1
) # [1, seq]
# Answer: (log prob, is-exact-match)
answer = (float(logits.sum()), bool(max_equal))
res.append((answer, per_sample_time, 0, 0, 0, 0))
self.cache_hook.add_partial("loglikelihood", request_str, answer)
pbar.update(1)
pbar.close()
return re_ord.get_original(res)
def _model_generate(self, context, max_tokens, stop, **generation_kwargs):
# temperature = 0.0 if not set
# if do_sample is false and temp==0.0:
# remove temperature, as do_sample=False takes care of this
# and we don't want a warning from HF
generation_kwargs["temperature"] = generation_kwargs.get("temperature", 0.0)
do_sample = generation_kwargs.get("do_sample", None)
# is_gsm8k = generation_kwargs.get("is_gsm8k", False)
# The temperature has to be a strictly positive float -- if it is 0.0, use greedy decoding strategies
if generation_kwargs.get("temperature") == 0.0 and do_sample is None:
generation_kwargs["do_sample"] = do_sample = False
if do_sample is False and generation_kwargs.get("temperature") == 0.0:
generation_kwargs.pop("temperature")
# if is_gsm8k:
# generation_kwargs.pop("is_gsm8k")
context_length = context.shape[1]
if self.model.__class__.__name__ == "MoE":
model_config = self.model.model.config
else:
model_config = self.model.config
if not self.precision:
if model_config.quantization_config._load_in_4bit:
self.precision = "4bit"
elif model_config.quantization_config._load_in_8bit:
self.precision = "8bit"
else:
raise ValueError("Unknown precision")
# print(self.model)
linear_count = 0
element_wise_mul = 0
for name, module in self.model.named_modules():
if ('layers.0.' in name or "transformer.blocks.0" in name) and ('attn' not in name):
if 'experts.0.' in name or "ffn.experts" in name:
if "linear_v" in name:
element_wise_mul = 1
if isinstance(module, torch.nn.Linear):
# print(name, module)
linear_count += 1
elif isinstance(module, DbrxExpertGLU):
linear_count = 3
element_wise_mul = 1
# elif 'experts' not in name:
# if ("gate" not in name and "router" not in name) or "gate_proj" in name:
# if "gate_proj" in name:
# element_wise_mul = 1
# if isinstance(module, torch.nn.Linear):
# # print(name, module)
# linear_count += 1
else:
continue
print(f"linear_count: {linear_count}")
print(f"element_wise_mul: {element_wise_mul}")
print(f"GPU usage: {self._detect_num_gpus_used()}")
stopping_criteria = stop_sequences_criteria(
self.tokenizer, stop, context.shape[1], context.shape[0]
)
stop_watch = StopWatch(self.tokenizer)
start = time()
res = self.model.generate(
input_ids=context,
max_new_tokens=max_tokens,
stopping_criteria=stopping_criteria,
pad_token_id=self.tokenizer.pad_token_id,
use_cache=True,
streamer=stop_watch,
**generation_kwargs,
)
end = time()
batch_size = context.shape[0]
output_length = stop_watch.decoding_iterations
precision_bytes = transfer_precision2bytes(self.precision)
model_size_param = sum(p.numel() for p in self.model.parameters())
n_layers = model_config.num_hidden_layers if hasattr(model_config, "num_hidden_layers") else \
(model_config.num_layers if hasattr(model_config, "num_layers") else model_config.n_layers)
d_model = model_config.hidden_size if hasattr(model_config, "hidden_size") else model_config.d_model
if hasattr(model_config, "num_experts_per_tok"):
n_experts_per_tok = model_config.num_experts_per_tok
elif hasattr(model_config, "num_selected_experts"):
n_experts_per_tok = model_config.num_selected_experts
elif hasattr(model_config, "ffn_config"):
n_experts_per_tok = model_config.ffn_config.moe_top_k
else:
n_experts_per_tok = 1
if hasattr(model_config, "ffn_dim"):
d_ff = model_config.ffn_dim
elif hasattr(model_config, "intermediate_size"):
d_ff = model_config.intermediate_size
elif hasattr(model_config, "d_ff"):
d_ff = model_config.d_ff
elif hasattr(model_config, "ff_ratio"):
d_ff = d_model * model_config.ff_ratio
elif hasattr(model_config, "ffn_config"):
d_ff = model_config.ffn_config.ffn_hidden_size
else:
raise ValueError("Unknown FFN dimension")
if hasattr(model_config, "num_local_experts"):
num_experts = model_config.num_local_experts
elif hasattr(model_config, "num_experts"):
num_experts = model_config.num_experts
elif hasattr(model_config, "ffn_config"):
num_experts = model_config.ffn_config.moe_num_experts
else:
num_experts = 1
ffn_params = n_layers * d_ff * linear_count * d_model
shared_params = model_size_param - num_experts * ffn_params
model_size = shared_params + n_experts_per_tok * ffn_params
per_token_kv_size = 2 * n_layers * d_model * precision_bytes
peak_bw_single = get_peak_bw(get_gpu_details())
peak_bw = peak_bw_single * self._detect_num_gpus_used()
context_prefill_size = context_length
kv_size = context_prefill_size * per_token_kv_size + (output_length - 1) * per_token_kv_size / 2
kv_size = kv_size / 1e9
n_vocab = model_config.vocab_size
end_to_end_time = (end - start) / batch_size
prefilling_time = stop_watch.prefilling_time / batch_size
decoding_time = stop_watch.decoding_time / batch_size
token_per_sec = output_length / decoding_time
achieve_mem_bw = (model_size * precision_bytes / 1e9 + kv_size) * token_per_sec
avg_context_length = context_length + (output_length - 1) / 2
flops_per_token = 2 * model_size + ((linear_count + element_wise_mul) * n_layers * avg_context_length * d_model) + 4 * d_model + 2 * d_model * n_vocab
peak_flops_single = get_peak_flops(get_gpu_details(), self.precision)
peak_flops = peak_flops_single * self._detect_num_gpus_used()
## TODO only support llama-type decoder only models and moe models of switch transformer and mixtrial
mfu = token_per_sec * flops_per_token / peak_flops
mbu = achieve_mem_bw / peak_bw
print(f"mfu: {mfu}, mbu: {mbu}")
return res, end_to_end_time, prefilling_time, token_per_sec, mfu, mbu
def generate_until(
self, requests: List[Instance], disable_tqdm: bool = False
) -> List[str]:
res = []
def _collate(req: Tuple[str, dict]):
"""Defines the key for the sorted method"""
# the negative sign on len(toks) sorts descending - this has a few advantages:
# - time estimates will always be over not underestimates, which is more useful for planning
# - to know the size of a batch when going through the list, you know the first one is always the batch
# padded context length. this is useful to simplify the batching logic and more importantly to make
# automatic adaptive batches much much easier to implement
# - any OOMs will happen right away rather than near the end
toks = self.tok_encode(req[0])
return -len(toks), req[0]
pbar = tqdm(
total=len(requests),
disable=(disable_tqdm or (self.rank != 0)),
desc="Running generate_until requests",
)
adaptive_batch_size = None
if self.batch_size == "auto":
# using rolling window with maximum context
print("Passed argument batch_size = auto. Detecting largest batch size")
batch_size = self._detect_batch_size()
print(f"Determined Largest batch size: {batch_size}")
adaptive_batch_size = batch_size
# for each different set of kwargs, we execute all requests, by batch.
batch_size = (
self.batch_size
if self.batch_size != "auto"
else adaptive_batch_size
if adaptive_batch_size is not None
else 0
)
batch_fn = (
self._batch_scheduler
if self.batch_size == "auto" and not adaptive_batch_size
else None
)
# we group requests by their generation_kwargs,
# so that we don't try to execute e.g. greedy sampling and temp=0.8 sampling
# in the same batch.
# group_fn=lambda x: x[1] -> x=(context, gen_kwargs)
re_ords = Collator(
[reg.args for reg in requests],
sort_fn=_collate,
group_by="gen_kwargs",
group_fn=lambda x: x[1],
)
chunks = re_ords.get_batched(n=batch_size, batch_fn=batch_fn)
for chunk in chunks:
contexts, all_gen_kwargs = zip(*chunk)
# we assume all gen kwargs in the batch are the same
# this is safe to assume because the `grouper` object ensures it.
gen_kwargs = all_gen_kwargs[0]
# unpack our keyword arguments.
until = None
if isinstance(gen_kwargs, dict):
kwargs = copy.deepcopy(gen_kwargs) # edge case for repeats > 1
if "until" in kwargs.keys():
until = kwargs.pop("until")
if isinstance(until, str):
until = [kwargs]
elif not isinstance(until, list):
raise ValueError(
f"Expected `kwargs['until']` to be of type Union[str,list] but got {until}"
)
else:
raise ValueError(
f"Expected `kwargs` to be of type `dict` but got {type(gen_kwargs)}"
)
# add EOS token to stop sequences
eos = "<|eot_id|>"
if not until:
until = [eos]
else:
until.append(eos)
# is_gsm8k = kwargs.get("is_gsm8k", False)
# if is_gsm8k:
# until = ["Question:", "Question", "</s>"]
# eos_ids = [self.tokenizer.eos_token_id,
# self.tokenizer.convert_tokens_to_ids("<|eot_id|>")]
if "max_gen_toks" in kwargs.keys():
max_gen_toks = kwargs.pop("max_gen_toks")
else:
max_gen_toks = self.max_gen_toks
# set the max length in tokens of inputs ("context_enc")
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
# max len for inputs = max length, minus room to generate the max new tokens
max_ctx_len = self.max_length - max_gen_toks
elif self.AUTO_MODEL_CLASS == transformers.AutoModelForSeq2SeqLM:
# max len for inputs = encoder's whole max_length
max_ctx_len = self.max_length
# encode, pad, and truncate contexts for this batch
context_enc, attn_masks = self.tok_batch_encode(
contexts,
left_truncate_len=max_ctx_len,
truncation=self.truncation,
)
# print("context: ", self.tok_decode(context_enc[0]))
context_enc = context_enc.to(self.device)
attn_masks = attn_masks.to(self.device)
if "max_tokens" not in kwargs:
kwargs["max_tokens"] = max_gen_toks
# perform batched generation
cont, end_to_end_time, prefilling_time, token_per_sec, mfu, mbu = self._model_generate(
context=context_enc,
attention_mask=attn_masks,
stop=until,
**kwargs,
)
cont_toks_list = cont.tolist()
for cont_toks, context in zip(cont_toks_list, contexts):
# discard context + left-padding toks if using causal decoder-only LM
if self.AUTO_MODEL_CLASS == transformers.AutoModelForCausalLM:
# print("After Generation: ", self.tok_decode(cont_toks))
cont_toks = cont_toks[context_enc.shape[1] :]
s = self.tok_decode(cont_toks)
# # use secondary stop seqs to cut off should-have-been-stopped content post-hoc
# if not is_gsm8k:
for term in until:
if len(term) > 0:
# ignore '' separator,
# for seq2seq case where self.tok_decode(self.eot_token_id) = ''
s = s.split(term)[0]
# print(s)
res.append((s, end_to_end_time, prefilling_time, token_per_sec, mfu, mbu))
self.cache_hook.add_partial("generate_until", (context, gen_kwargs), s)
pbar.update(1)
# reorder this group of results back to original unsorted form
res = re_ords.get_original(res)
pbar.close()
return res