stablelm-2-chat / app.py
pvduy's picture
Update app.py
ca3ac1a verified
import argparse
import os
import spaces
import gradio as gr
import json
from threading import Thread
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MAX_LENGTH = 4096
DEFAULT_MAX_NEW_TOKENS = 1024
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--base_model", type=str) # model path
parser.add_argument("--n_gpus", type=int, default=1) # n_gpu
return parser.parse_args()
@spaces.GPU()
def predict(message, history, system_prompt, temperature, max_tokens):
global model, tokenizer, device
messages = [{'role': 'system', 'content': system_prompt}]
for human, assistant in history:
messages.append({'role': 'user', 'content': human})
messages.append({'role': 'assistant', 'content': assistant})
messages.append({'role': 'user', 'content': message})
problem = [tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)]
stop_tokens = ["<|endoftext|>", "<|im_end|>"]
streamer = TextIteratorStreamer(tokenizer, timeout=100.0, skip_prompt=True, skip_special_tokens=True)
enc = tokenizer(problem, return_tensors="pt", padding=True, truncation=True)
input_ids = enc.input_ids
attention_mask = enc.attention_mask
if input_ids.shape[1] > MAX_LENGTH:
input_ids = input_ids[:, -MAX_LENGTH:]
input_ids = input_ids.to(device)
attention_mask = attention_mask.to(device)
generate_kwargs = dict(
{"input_ids": input_ids, "attention_mask": attention_mask},
streamer=streamer,
do_sample=True,
top_p=0.95,
temperature=temperature,
max_new_tokens=DEFAULT_MAX_NEW_TOKENS,
use_cache=True,
eos_token_id=100278 # <|im_end|>
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
if __name__ == "__main__":
args = parse_args()
tokenizer = AutoTokenizer.from_pretrained("stabilityai/stablelm-2-12b-chat")
tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-2-12b-chat')
model = AutoModelForCausalLM.from_pretrained(
'stabilityai/stablelm-2-12b-chat',
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True
)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
gr.ChatInterface(
predict,
title="StableLM 2 12B Chat - Demo",
description="StableLM 2 12B Chat - StabilityAI",
theme="soft",
chatbot=gr.Chatbot(label="Chat History",),
textbox=gr.Textbox(placeholder="input", container=False, scale=7),
retry_btn=None,
undo_btn="Delete Previous",
clear_btn="Clear",
additional_inputs=[
gr.Textbox("You are a helpful assistant.", label="System Prompt"),
gr.Slider(0, 1, 0.5, label="Temperature"),
gr.Slider(100, 2048, 1024, label="Max Tokens"),
],
examples=[
["What's been the role of music in human societies?"],
["Escribe un poema corto sobre la historia del Mediterráneo."],
["Scrivi un Haiku che celebri il gelato."],
["Schreibe ein Haiku über die Alpen."],
["Ecris une prose a propos de la mer du Nord."],
["Escreva um poema sobre a saudade."],
["Jane has 8 apples, out of which 2 are red and 3 are green. Assuming there are only red, green and white apples, how many of them are white? Solve this in Python."],
],
additional_inputs_accordion_name="Parameters",
).queue().launch()