Spaces:
Running
on
Zero
Running
on
Zero
from soni_translate.logging_setup import logger | |
import torch | |
import gc | |
import numpy as np | |
import os | |
import shutil | |
import warnings | |
import threading | |
from tqdm import tqdm | |
from lib.infer_pack.models import ( | |
SynthesizerTrnMs256NSFsid, | |
SynthesizerTrnMs256NSFsid_nono, | |
SynthesizerTrnMs768NSFsid, | |
SynthesizerTrnMs768NSFsid_nono, | |
) | |
from lib.audio import load_audio | |
import soundfile as sf | |
import edge_tts | |
import asyncio | |
from soni_translate.utils import remove_directory_contents, create_directories | |
from scipy import signal | |
from time import time as ttime | |
import faiss | |
from vci_pipeline import VC, change_rms, bh, ah | |
import librosa | |
warnings.filterwarnings("ignore") | |
class Config: | |
def __init__(self, only_cpu=False): | |
self.device = "cuda:0" | |
self.is_half = True | |
self.n_cpu = 0 | |
self.gpu_name = None | |
self.gpu_mem = None | |
( | |
self.x_pad, | |
self.x_query, | |
self.x_center, | |
self.x_max | |
) = self.device_config(only_cpu) | |
def device_config(self, only_cpu) -> tuple: | |
if torch.cuda.is_available() and not only_cpu: | |
i_device = int(self.device.split(":")[-1]) | |
self.gpu_name = torch.cuda.get_device_name(i_device) | |
if ( | |
("16" in self.gpu_name and "V100" not in self.gpu_name.upper()) | |
or "P40" in self.gpu_name.upper() | |
or "1060" in self.gpu_name | |
or "1070" in self.gpu_name | |
or "1080" in self.gpu_name | |
): | |
logger.info( | |
"16/10 Series GPUs and P40 excel " | |
"in single-precision tasks." | |
) | |
self.is_half = False | |
else: | |
self.gpu_name = None | |
self.gpu_mem = int( | |
torch.cuda.get_device_properties(i_device).total_memory | |
/ 1024 | |
/ 1024 | |
/ 1024 | |
+ 0.4 | |
) | |
elif torch.backends.mps.is_available() and not only_cpu: | |
logger.info("Supported N-card not found, using MPS for inference") | |
self.device = "mps" | |
else: | |
logger.info("No supported N-card found, using CPU for inference") | |
self.device = "cpu" | |
self.is_half = False | |
if self.n_cpu == 0: | |
self.n_cpu = os.cpu_count() | |
if self.is_half: | |
# 6GB VRAM configuration | |
x_pad = 3 | |
x_query = 10 | |
x_center = 60 | |
x_max = 65 | |
else: | |
# 5GB VRAM configuration | |
x_pad = 1 | |
x_query = 6 | |
x_center = 38 | |
x_max = 41 | |
if self.gpu_mem is not None and self.gpu_mem <= 4: | |
x_pad = 1 | |
x_query = 5 | |
x_center = 30 | |
x_max = 32 | |
logger.info( | |
f"Config: Device is {self.device}, " | |
f"half precision is {self.is_half}" | |
) | |
return x_pad, x_query, x_center, x_max | |
BASE_DOWNLOAD_LINK = "https://huggingface.co/r3gm/sonitranslate_voice_models/resolve/main/" | |
BASE_MODELS = [ | |
"hubert_base.pt", | |
"rmvpe.pt" | |
] | |
BASE_DIR = "." | |
def load_hu_bert(config): | |
from fairseq import checkpoint_utils | |
from soni_translate.utils import download_manager | |
for id_model in BASE_MODELS: | |
download_manager( | |
os.path.join(BASE_DOWNLOAD_LINK, id_model), BASE_DIR | |
) | |
models, _, _ = checkpoint_utils.load_model_ensemble_and_task( | |
["hubert_base.pt"], | |
suffix="", | |
) | |
hubert_model = models[0] | |
hubert_model = hubert_model.to(config.device) | |
if config.is_half: | |
hubert_model = hubert_model.half() | |
else: | |
hubert_model = hubert_model.float() | |
hubert_model.eval() | |
return hubert_model | |
def load_trained_model(model_path, config): | |
if not model_path: | |
raise ValueError("No model found") | |
logger.info("Loading %s" % model_path) | |
cpt = torch.load(model_path, map_location="cpu") | |
tgt_sr = cpt["config"][-1] | |
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk | |
if_f0 = cpt.get("f0", 1) | |
if if_f0 == 0: | |
# protect to 0.5 need? | |
pass | |
version = cpt.get("version", "v1") | |
if version == "v1": | |
if if_f0 == 1: | |
net_g = SynthesizerTrnMs256NSFsid( | |
*cpt["config"], is_half=config.is_half | |
) | |
else: | |
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"]) | |
elif version == "v2": | |
if if_f0 == 1: | |
net_g = SynthesizerTrnMs768NSFsid( | |
*cpt["config"], is_half=config.is_half | |
) | |
else: | |
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"]) | |
del net_g.enc_q | |
net_g.load_state_dict(cpt["weight"], strict=False) | |
net_g.eval().to(config.device) | |
if config.is_half: | |
net_g = net_g.half() | |
else: | |
net_g = net_g.float() | |
vc = VC(tgt_sr, config) | |
n_spk = cpt["config"][-3] | |
return n_spk, tgt_sr, net_g, vc, cpt, version | |
class ClassVoices: | |
def __init__(self, only_cpu=False): | |
self.model_config = {} | |
self.config = None | |
self.only_cpu = only_cpu | |
def apply_conf( | |
self, | |
tag="base_model", | |
file_model="", | |
pitch_algo="pm", | |
pitch_lvl=0, | |
file_index="", | |
index_influence=0.66, | |
respiration_median_filtering=3, | |
envelope_ratio=0.25, | |
consonant_breath_protection=0.33, | |
resample_sr=0, | |
file_pitch_algo="", | |
): | |
if not file_model: | |
raise ValueError("Model not found") | |
if file_index is None: | |
file_index = "" | |
if file_pitch_algo is None: | |
file_pitch_algo = "" | |
if not self.config: | |
self.config = Config(self.only_cpu) | |
self.hu_bert_model = None | |
self.model_pitch_estimator = None | |
self.model_config[tag] = { | |
"file_model": file_model, | |
"pitch_algo": pitch_algo, | |
"pitch_lvl": pitch_lvl, # no decimal | |
"file_index": file_index, | |
"index_influence": index_influence, | |
"respiration_median_filtering": respiration_median_filtering, | |
"envelope_ratio": envelope_ratio, | |
"consonant_breath_protection": consonant_breath_protection, | |
"resample_sr": resample_sr, | |
"file_pitch_algo": file_pitch_algo, | |
} | |
return f"CONFIGURATION APPLIED FOR {tag}: {file_model}" | |
def infer( | |
self, | |
task_id, | |
params, | |
# load model | |
n_spk, | |
tgt_sr, | |
net_g, | |
pipe, | |
cpt, | |
version, | |
if_f0, | |
# load index | |
index_rate, | |
index, | |
big_npy, | |
# load f0 file | |
inp_f0, | |
# audio file | |
input_audio_path, | |
overwrite, | |
): | |
f0_method = params["pitch_algo"] | |
f0_up_key = params["pitch_lvl"] | |
filter_radius = params["respiration_median_filtering"] | |
resample_sr = params["resample_sr"] | |
rms_mix_rate = params["envelope_ratio"] | |
protect = params["consonant_breath_protection"] | |
if not os.path.exists(input_audio_path): | |
raise ValueError( | |
"The audio file was not found or is not " | |
f"a valid file: {input_audio_path}" | |
) | |
f0_up_key = int(f0_up_key) | |
audio = load_audio(input_audio_path, 16000) | |
# Normalize audio | |
audio_max = np.abs(audio).max() / 0.95 | |
if audio_max > 1: | |
audio /= audio_max | |
times = [0, 0, 0] | |
# filters audio signal, pads it, computes sliding window sums, | |
# and extracts optimized time indices | |
audio = signal.filtfilt(bh, ah, audio) | |
audio_pad = np.pad( | |
audio, (pipe.window // 2, pipe.window // 2), mode="reflect" | |
) | |
opt_ts = [] | |
if audio_pad.shape[0] > pipe.t_max: | |
audio_sum = np.zeros_like(audio) | |
for i in range(pipe.window): | |
audio_sum += audio_pad[i:i - pipe.window] | |
for t in range(pipe.t_center, audio.shape[0], pipe.t_center): | |
opt_ts.append( | |
t | |
- pipe.t_query | |
+ np.where( | |
np.abs(audio_sum[t - pipe.t_query: t + pipe.t_query]) | |
== np.abs(audio_sum[t - pipe.t_query: t + pipe.t_query]).min() | |
)[0][0] | |
) | |
s = 0 | |
audio_opt = [] | |
t = None | |
t1 = ttime() | |
sid_value = 0 | |
sid = torch.tensor(sid_value, device=pipe.device).unsqueeze(0).long() | |
# Pads audio symmetrically, calculates length divided by window size. | |
audio_pad = np.pad(audio, (pipe.t_pad, pipe.t_pad), mode="reflect") | |
p_len = audio_pad.shape[0] // pipe.window | |
# Estimates pitch from audio signal | |
pitch, pitchf = None, None | |
if if_f0 == 1: | |
pitch, pitchf = pipe.get_f0( | |
input_audio_path, | |
audio_pad, | |
p_len, | |
f0_up_key, | |
f0_method, | |
filter_radius, | |
inp_f0, | |
) | |
pitch = pitch[:p_len] | |
pitchf = pitchf[:p_len] | |
if pipe.device == "mps": | |
pitchf = pitchf.astype(np.float32) | |
pitch = torch.tensor( | |
pitch, device=pipe.device | |
).unsqueeze(0).long() | |
pitchf = torch.tensor( | |
pitchf, device=pipe.device | |
).unsqueeze(0).float() | |
t2 = ttime() | |
times[1] += t2 - t1 | |
for t in opt_ts: | |
t = t // pipe.window * pipe.window | |
if if_f0 == 1: | |
pitch_slice = pitch[ | |
:, s // pipe.window: (t + pipe.t_pad2) // pipe.window | |
] | |
pitchf_slice = pitchf[ | |
:, s // pipe.window: (t + pipe.t_pad2) // pipe.window | |
] | |
else: | |
pitch_slice = None | |
pitchf_slice = None | |
audio_slice = audio_pad[s:t + pipe.t_pad2 + pipe.window] | |
audio_opt.append( | |
pipe.vc( | |
self.hu_bert_model, | |
net_g, | |
sid, | |
audio_slice, | |
pitch_slice, | |
pitchf_slice, | |
times, | |
index, | |
big_npy, | |
index_rate, | |
version, | |
protect, | |
)[pipe.t_pad_tgt:-pipe.t_pad_tgt] | |
) | |
s = t | |
pitch_end_slice = pitch[ | |
:, t // pipe.window: | |
] if t is not None else pitch | |
pitchf_end_slice = pitchf[ | |
:, t // pipe.window: | |
] if t is not None else pitchf | |
audio_opt.append( | |
pipe.vc( | |
self.hu_bert_model, | |
net_g, | |
sid, | |
audio_pad[t:], | |
pitch_end_slice, | |
pitchf_end_slice, | |
times, | |
index, | |
big_npy, | |
index_rate, | |
version, | |
protect, | |
)[pipe.t_pad_tgt:-pipe.t_pad_tgt] | |
) | |
audio_opt = np.concatenate(audio_opt) | |
if rms_mix_rate != 1: | |
audio_opt = change_rms( | |
audio, 16000, audio_opt, tgt_sr, rms_mix_rate | |
) | |
if resample_sr >= 16000 and tgt_sr != resample_sr: | |
audio_opt = librosa.resample( | |
audio_opt, orig_sr=tgt_sr, target_sr=resample_sr | |
) | |
audio_max = np.abs(audio_opt).max() / 0.99 | |
max_int16 = 32768 | |
if audio_max > 1: | |
max_int16 /= audio_max | |
audio_opt = (audio_opt * max_int16).astype(np.int16) | |
del pitch, pitchf, sid | |
if torch.cuda.is_available(): | |
torch.cuda.empty_cache() | |
if tgt_sr != resample_sr >= 16000: | |
final_sr = resample_sr | |
else: | |
final_sr = tgt_sr | |
""" | |
"Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss" % ( | |
times[0], | |
times[1], | |
times[2], | |
), (final_sr, audio_opt) | |
""" | |
if overwrite: | |
output_audio_path = input_audio_path # Overwrite | |
else: | |
basename = os.path.basename(input_audio_path) | |
dirname = os.path.dirname(input_audio_path) | |
new_basename = basename.split( | |
'.')[0] + "_edited." + basename.split('.')[-1] | |
new_path = os.path.join(dirname, new_basename) | |
logger.info(str(new_path)) | |
output_audio_path = new_path | |
# Save file | |
sf.write( | |
file=output_audio_path, | |
samplerate=final_sr, | |
data=audio_opt | |
) | |
self.model_config[task_id]["result"].append(output_audio_path) | |
self.output_list.append(output_audio_path) | |
def make_test( | |
self, | |
tts_text, | |
tts_voice, | |
model_path, | |
index_path, | |
transpose, | |
f0_method, | |
): | |
folder_test = "test" | |
tag = "test_edge" | |
tts_file = "test/test.wav" | |
tts_edited = "test/test_edited.wav" | |
create_directories(folder_test) | |
remove_directory_contents(folder_test) | |
if "SET_LIMIT" == os.getenv("DEMO"): | |
if len(tts_text) > 60: | |
tts_text = tts_text[:60] | |
logger.warning("DEMO; limit to 60 characters") | |
try: | |
asyncio.run(edge_tts.Communicate( | |
tts_text, "-".join(tts_voice.split('-')[:-1]) | |
).save(tts_file)) | |
except Exception as e: | |
raise ValueError( | |
"No audio was received. Please change the " | |
f"tts voice for {tts_voice}. Error: {str(e)}" | |
) | |
shutil.copy(tts_file, tts_edited) | |
self.apply_conf( | |
tag=tag, | |
file_model=model_path, | |
pitch_algo=f0_method, | |
pitch_lvl=transpose, | |
file_index=index_path, | |
index_influence=0.66, | |
respiration_median_filtering=3, | |
envelope_ratio=0.25, | |
consonant_breath_protection=0.33, | |
) | |
self( | |
audio_files=tts_edited, | |
tag_list=tag, | |
overwrite=True | |
) | |
return tts_edited, tts_file | |
def run_threads(self, threads): | |
# Start threads | |
for thread in threads: | |
thread.start() | |
# Wait for all threads to finish | |
for thread in threads: | |
thread.join() | |
gc.collect() | |
torch.cuda.empty_cache() | |
def unload_models(self): | |
self.hu_bert_model = None | |
self.model_pitch_estimator = None | |
gc.collect() | |
torch.cuda.empty_cache() | |
def __call__( | |
self, | |
audio_files=[], | |
tag_list=[], | |
overwrite=False, | |
parallel_workers=1, | |
): | |
logger.info(f"Parallel workers: {str(parallel_workers)}") | |
self.output_list = [] | |
if not self.model_config: | |
raise ValueError("No model has been configured for inference") | |
if isinstance(audio_files, str): | |
audio_files = [audio_files] | |
if isinstance(tag_list, str): | |
tag_list = [tag_list] | |
if not audio_files: | |
raise ValueError("No audio found to convert") | |
if not tag_list: | |
tag_list = [list(self.model_config.keys())[-1]] * len(audio_files) | |
if len(audio_files) > len(tag_list): | |
logger.info("Extend tag list to match audio files") | |
extend_number = len(audio_files) - len(tag_list) | |
tag_list.extend([tag_list[0]] * extend_number) | |
if len(audio_files) < len(tag_list): | |
logger.info("Cut list tags") | |
tag_list = tag_list[:len(audio_files)] | |
tag_file_pairs = list(zip(tag_list, audio_files)) | |
sorted_tag_file = sorted(tag_file_pairs, key=lambda x: x[0]) | |
# Base params | |
if not self.hu_bert_model: | |
self.hu_bert_model = load_hu_bert(self.config) | |
cache_params = None | |
threads = [] | |
progress_bar = tqdm(total=len(tag_list), desc="Progress") | |
for i, (id_tag, input_audio_path) in enumerate(sorted_tag_file): | |
if id_tag not in self.model_config.keys(): | |
logger.info( | |
f"No configured model for {id_tag} with {input_audio_path}" | |
) | |
continue | |
if ( | |
len(threads) >= parallel_workers | |
or cache_params != id_tag | |
and cache_params is not None | |
): | |
self.run_threads(threads) | |
progress_bar.update(len(threads)) | |
threads = [] | |
if cache_params != id_tag: | |
self.model_config[id_tag]["result"] = [] | |
# Unload previous | |
( | |
n_spk, | |
tgt_sr, | |
net_g, | |
pipe, | |
cpt, | |
version, | |
if_f0, | |
index_rate, | |
index, | |
big_npy, | |
inp_f0, | |
) = [None] * 11 | |
gc.collect() | |
torch.cuda.empty_cache() | |
# Model params | |
params = self.model_config[id_tag] | |
model_path = params["file_model"] | |
f0_method = params["pitch_algo"] | |
file_index = params["file_index"] | |
index_rate = params["index_influence"] | |
f0_file = params["file_pitch_algo"] | |
# Load model | |
( | |
n_spk, | |
tgt_sr, | |
net_g, | |
pipe, | |
cpt, | |
version | |
) = load_trained_model(model_path, self.config) | |
if_f0 = cpt.get("f0", 1) # pitch data | |
# Load index | |
if os.path.exists(file_index) and index_rate != 0: | |
try: | |
index = faiss.read_index(file_index) | |
big_npy = index.reconstruct_n(0, index.ntotal) | |
except Exception as error: | |
logger.error(f"Index: {str(error)}") | |
index_rate = 0 | |
index = big_npy = None | |
else: | |
logger.warning("File index not found") | |
index_rate = 0 | |
index = big_npy = None | |
# Load f0 file | |
inp_f0 = None | |
if os.path.exists(f0_file): | |
try: | |
with open(f0_file, "r") as f: | |
lines = f.read().strip("\n").split("\n") | |
inp_f0 = [] | |
for line in lines: | |
inp_f0.append([float(i) for i in line.split(",")]) | |
inp_f0 = np.array(inp_f0, dtype="float32") | |
except Exception as error: | |
logger.error(f"f0 file: {str(error)}") | |
if "rmvpe" in f0_method: | |
if not self.model_pitch_estimator: | |
from lib.rmvpe import RMVPE | |
logger.info("Loading vocal pitch estimator model") | |
self.model_pitch_estimator = RMVPE( | |
"rmvpe.pt", | |
is_half=self.config.is_half, | |
device=self.config.device | |
) | |
pipe.model_rmvpe = self.model_pitch_estimator | |
cache_params = id_tag | |
# self.infer( | |
# id_tag, | |
# params, | |
# # load model | |
# n_spk, | |
# tgt_sr, | |
# net_g, | |
# pipe, | |
# cpt, | |
# version, | |
# if_f0, | |
# # load index | |
# index_rate, | |
# index, | |
# big_npy, | |
# # load f0 file | |
# inp_f0, | |
# # output file | |
# input_audio_path, | |
# overwrite, | |
# ) | |
thread = threading.Thread( | |
target=self.infer, | |
args=( | |
id_tag, | |
params, | |
# loaded model | |
n_spk, | |
tgt_sr, | |
net_g, | |
pipe, | |
cpt, | |
version, | |
if_f0, | |
# loaded index | |
index_rate, | |
index, | |
big_npy, | |
# loaded f0 file | |
inp_f0, | |
# audio file | |
input_audio_path, | |
overwrite, | |
) | |
) | |
threads.append(thread) | |
# Run last | |
if threads: | |
self.run_threads(threads) | |
progress_bar.update(len(threads)) | |
progress_bar.close() | |
final_result = [] | |
valid_tags = set(tag_list) | |
for tag in valid_tags: | |
if ( | |
tag in self.model_config.keys() | |
and "result" in self.model_config[tag].keys() | |
): | |
final_result.extend(self.model_config[tag]["result"]) | |
return final_result | |