Spaces:
Build error
Build error
import matplotlib.pyplot as plt | |
import nmslib | |
import numpy as np | |
import os | |
import streamlit as st | |
from PIL import Image | |
from transformers import CLIPProcessor, FlaxCLIPModel | |
import utils | |
BASELINE_MODEL = "openai/clip-vit-base-patch32" | |
MODEL_PATH = "flax-community/clip-rsicd-v2" | |
IMAGE_VECTOR_FILE = "./vectors/test-bs128x8-lr5e-6-adam-ckpt-1.tsv" | |
IMAGES_DIR = "./images" | |
CAPTIONS_FILE = os.path.join(IMAGES_DIR, "test-captions.json") | |
def app(): | |
filenames, index = utils.load_index(IMAGE_VECTOR_FILE) | |
model, processor = utils.load_model(MODEL_PATH, BASELINE_MODEL) | |
image2caption = utils.load_captions(CAPTIONS_FILE) | |
st.title("Retrieve Images given Text") | |
st.markdown(""" | |
This demo shows the image to text retrieval capabilities of this model, i.e., | |
given a text query, we use our fine-tuned CLIP model to project the text query | |
to the image/caption embedding space and search for nearby images (by | |
cosine similarity) in this space. | |
Our fine-tuned CLIP model was previously used to generate image vectors for | |
our demo, and NMSLib was used for fast vector access. | |
""") | |
suggested_query = [ | |
"ships", | |
"school house", | |
"military installation", | |
"mountains", | |
"beaches", | |
"airports", | |
"lakes" | |
] | |
st.text("Some suggested queries to start you off with...") | |
col0, col1, col2, col3, col4, col5, col6 = st.columns(7) | |
# [1, 1.1, 1.3, 1.1, 1, 1, 1]) | |
suggest_idx = -1 | |
with col0: | |
if st.button(suggested_query[0]): | |
suggest_idx = 0 | |
with col1: | |
if st.button(suggested_query[1]): | |
suggest_idx = 1 | |
with col2: | |
if st.button(suggested_query[2]): | |
suggest_idx = 2 | |
with col3: | |
if st.button(suggested_query[3]): | |
suggest_idx = 3 | |
with col4: | |
if st.button(suggested_query[4]): | |
suggest_idx = 4 | |
with col5: | |
if st.button(suggested_query[5]): | |
suggest_idx = 5 | |
with col6: | |
if st.button(suggested_query[6]): | |
suggest_idx = 6 | |
query = st.text_input("OR enter a text Query:") | |
query = suggested_query[suggest_idx] if suggest_idx > -1 else query | |
if st.button("Query") or suggest_idx > -1: | |
inputs = processor(text=[query], images=None, return_tensors="jax", padding=True) | |
query_vec = model.get_text_features(**inputs) | |
query_vec = np.asarray(query_vec) | |
ids, distances = index.knnQuery(query_vec, k=10) | |
result_filenames = [filenames[id] for id in ids] | |
for rank, (result_filename, score) in enumerate(zip(result_filenames, distances)): | |
caption = "{:s} (score: {:.3f})".format(result_filename, 1.0 - score) | |
col1, col2, col3 = st.columns([2, 10, 10]) | |
col1.markdown("{:d}.".format(rank + 1)) | |
col2.image(Image.open(os.path.join(IMAGES_DIR, result_filename)), | |
caption=caption) | |
caption_text = [] | |
for caption in image2caption[result_filename]: | |
caption_text.append("* {:s}\n".format(caption)) | |
col3.markdown("".join(caption_text)) | |
st.markdown("---") | |
suggest_idx = -1 | |