Spaces:
Running
Running
File size: 9,811 Bytes
85c02a6 a4844a1 6840d6b a4844a1 ddfd741 6840d6b ddfd741 6840d6b ddfd741 6840d6b ddfd741 a4844a1 ddfd741 6840d6b ddfd741 6840d6b ddfd741 6840d6b 88b1bc3 a4844a1 85c02a6 a4844a1 ddfd741 a4844a1 88b1bc3 cc62867 85c02a6 cc62867 85c02a6 cc62867 ddfd741 85c02a6 ddfd741 85c02a6 cc62867 85c02a6 cc62867 85c02a6 cc62867 85c02a6 cc62867 85c02a6 ddfd741 a4844a1 6840d6b b3feaa3 ddfd741 6840d6b 85c02a6 6840d6b ddfd741 a4844a1 ddfd741 85c02a6 a4844a1 ddfd741 85c02a6 b3feaa3 ddfd741 a4844a1 85c02a6 a4844a1 ddfd741 85c02a6 a4844a1 ddfd741 85c02a6 ddfd741 8e31850 cc62867 711c0ff a4844a1 cc62867 6840d6b 85c02a6 8e31850 85c02a6 a4844a1 85c02a6 cc62867 a4844a1 85c02a6 cc62867 8e31850 85c02a6 cc62867 8e31850 85c02a6 cc62867 85c02a6 8e31850 af058e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 |
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import networkx as nx
import numpy as np
import json
import sys
import random
def build_graph_from_json(json_data, G):
"""Builds a graph from JSON data."""
def add_event(parent_id, event_data, depth):
"""Recursively adds events and subevents to the graph."""
# Add the current event node
node_id = len(G.nodes)
prob = event_data['probability'] / 100.0 # Convert percentage to probability
pos = (depth, prob, event_data['event_number']) # Use event_number for z position
label = event_data['name'] # Use event name as label
G.add_node(node_id, pos=pos, label=label)
if parent_id is not None:
G.add_edge(parent_id, node_id)
# Add child events
subevents = event_data.get('subevents', {}).get('event', [])
if not isinstance(subevents, list):
subevents = [subevents] # Ensure subevents is a list
for subevent in subevents:
add_event(node_id, subevent, depth + 1)
# Iterate through all top-level events (this is the corrected part)
for event_data in json_data.get('events', {}).values():
add_event(None, event_data, 0) # Add each event as a root node
def find_paths(G):
"""Finds the paths with the highest and lowest average probability,
and the longest and shortest durations in graph G."""
best_path = None
worst_path = None
longest_duration_path = None
shortest_duration_path = None
best_mean_prob = -1
worst_mean_prob = float('inf')
max_duration = -1
min_duration = float('inf')
for source in G.nodes:
for target in G.nodes:
if source != target:
all_paths = list(nx.all_simple_paths(G, source=source, target=target))
for path in all_paths:
# Check if all nodes in the path have the 'pos' attribute
if not all('pos' in G.nodes[node] for node in path):
continue # Skip paths with nodes missing the 'pos' attribute
# Calculate the mean probability of the path
probabilities = [G.nodes[node]['pos'][1] for node in path] # Get node probabilities
mean_prob = np.mean(probabilities)
# Evaluate path with the highest mean probability
if mean_prob > best_mean_prob:
best_mean_prob = mean_prob
best_path = path
# Evaluate path with the lowest mean probability
if mean_prob < worst_mean_prob:
worst_mean_prob = mean_prob
worst_path = path
# Calculate path duration
x_positions = [G.nodes[node]['pos'][0] for node in path]
duration = max(x_positions) - min(x_positions)
# Evaluate path with the longest duration
if duration > max_duration:
max_duration = duration
longest_duration_path = path
# Evaluate path with the shortest duration
if duration < min_duration:
min_duration = duration
shortest_duration_path = path
return best_path, best_mean_prob, worst_path, worst_mean_prob, longest_duration_path, shortest_duration_path
def calculate_angles_between_points(path, pos):
"""Calcula los ángulos en radianes y grados entre puntos consecutivos en los planos XZ, XY y ZY."""
angles = {'xz': [], 'xy': [], 'zy': []}
for i in range(1, len(path)):
# Obtener las posiciones de los puntos consecutivos
x1, y1, z1 = pos[path[i-1]]
x2, y2, z2 = pos[path[i]]
# Cálculo del ángulo en el plano XZ
delta_x = x2 - x1
delta_z = z2 - z1
angle_xz = math.atan2(delta_z, delta_x) # Radianes
angles['xz'].append((angle_xz, math.degrees(angle_xz))) # Convertir a grados
# Cálculo del ángulo en el plano XY
delta_y = y2 - y1
angle_xy = math.atan2(delta_y, delta_x) # Radianes
angles['xy'].append((angle_xy, math.degrees(angle_xy))) # Convertir a grados
# Cálculo del ángulo en el plano ZY
angle_zy = math.atan2(delta_y, delta_z) # Radianes
angles['zy'].append((angle_zy, math.degrees(angle_zy))) # Convertir a grados
return angles
def draw_path_3d(G, path, filename='path_plot_3d.png', highlight_color='blue'):
"""Dibuja solo un path específico en 3D y guarda la imagen con etiquetas."""
H = G.subgraph(path).copy()
pos = nx.get_node_attributes(G, 'pos')
labels = nx.get_node_attributes(G, 'label') # Obtener etiquetas
x_vals, y_vals, z_vals = zip(*[pos[node] for node in path])
fig = plt.figure(figsize=(16, 12))
ax = fig.add_subplot(111, projection='3d')
node_colors = []
for node in path:
prob = G.nodes[node]['pos'][1]
if prob < 0.33:
node_colors.append('red')
elif prob < 0.67:
node_colors.append('blue')
else:
node_colors.append('green')
ax.scatter(x_vals, y_vals, z_vals, c=node_colors, s=700, edgecolors='black', alpha=0.7)
# Dibujar aristas
for edge in H.edges():
x_start, y_start, z_start = pos[edge[0]]
x_end, y_end, z_end = pos[edge[1]]
ax.plot([x_start, x_end], [y_start, y_end], [z_start, z_end], color=highlight_color, lw=2)
# Agregar etiquetas
for node, (x, y, z) in pos.items():
if node in path:
label = labels.get(node, str(node))
ax.text(x, y, z, label, fontsize=12, color='black')
ax.set_xlabel('Time (weeks)')
ax.set_ylabel('Event Probability')
ax.set_zlabel('Event Number')
ax.set_title('3D Event Tree - Path')
plt.savefig(filename, bbox_inches='tight')
plt.close()
def draw_global_tree_3d(G, filename='global_tree.png'):
"""Draws the entire graph in 3D using networkx and matplotlib
and saves the figure to a file."""
pos = nx.get_node_attributes(G, 'pos')
labels = nx.get_node_attributes(G, 'label')
# Check if the graph is empty
if not pos:
print("Graph is empty. No nodes to visualize.")
return
# Get data for 3D visualization
x_vals, y_vals, z_vals = zip(*pos.values())
fig = plt.figure(figsize=(16, 12))
ax = fig.add_subplot(111, projection='3d')
# Assign colors to nodes based on probability
node_colors = []
for node, (x, prob, z) in pos.items():
if prob < 0.33:
node_colors.append('red')
elif prob < 0.67:
node_colors.append('blue')
else:
node_colors.append('green')
# Draw nodes
ax.scatter(x_vals, y_vals, z_vals, c=node_colors, s=700, edgecolors='black', alpha=0.7)
# Draw edges
for edge in G.edges():
x_start, y_start, z_start = pos[edge[0]]
x_end, y_end, z_end = pos[edge[1]]
ax.plot([x_start, x_end], [y_start, y_end], [z_start, z_end], color='gray', lw=2)
# Add labels to nodes
for node, (x, y, z) in pos.items():
label = labels.get(node, f"{node}")
ax.text(x, y, z, label, fontsize=12, color='black')
# Set labels and title
ax.set_xlabel('Time')
ax.set_ylabel('Probability')
ax.set_zlabel('Event Number')
ax.set_title('3D Event Tree')
plt.savefig(filename, bbox_inches='tight') # Save to file with adjusted margins
plt.close() # Close the figure to free resources
def main(json_data):
G = nx.DiGraph()
build_graph_from_json(json_data, G)
draw_global_tree_3d(G, filename='global_tree.png')
best_path, best_mean_prob, worst_path, worst_mean_prob, longest_path, shortest_path = find_paths(G)
if best_path:
print(f"\nPath with the highest average probability: {' -> '.join(map(str, best_path))}")
print(f"Average probability: {best_mean_prob:.2f}")
best_angles = calculate_angles_between_points(best_path, nx.get_node_attributes(G, 'pos'))
print("\nAngles for the most probable path:")
print(f"XZ plane angles (radians, degrees): {best_angles['xz']}")
print(f"XY plane angles (radians, degrees): {best_angles['xy']}")
print(f"ZY plane angles (radians, degrees): {best_angles['zy']}")
if worst_path:
print(f"\nPath with the lowest average probability: {' -> '.join(map(str, worst_path))}")
print(f"Average probability: {worst_mean_prob:.2f}")
if longest_path:
print(f"\nPath with the longest duration: {' -> '.join(map(str, longest_path))}")
longest_angles = calculate_angles_between_points(longest_path, nx.get_node_attributes(G, 'pos'))
print("\nAngles for the longest duration path:")
print(f"XZ plane angles (radians, degrees): {longest_angles['xz']}")
print(f"XY plane angles (radians, degrees): {longest_angles['xy']}")
print(f"ZY plane angles (radians, degrees): {longest_angles['zy']}")
if shortest_path:
print(f"\nPath with the shortest duration: {' -> '.join(map(str, shortest_path))}")
# Dibujar paths y añadir etiquetas a los nodos
if best_path:
draw_path_3d(G, best_path, 'best_path.png', 'blue')
if worst_path:
draw_path_3d(G, worst_path, 'worst_path.png', 'red')
if longest_path:
draw_path_3d(G, longest_path, 'longest_duration_path.png', 'green')
if shortest_path:
draw_path_3d(G, shortest_path, 'shortest_duration_path.png', 'purple')
return ('global_tree.png', 'best_path.png', 'longest_duration_path.png',longest_angles,best_angles)
|