events / psychohistory.py
neuralworm's picture
initial commit
d5919f3
raw
history blame
7.61 kB
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import networkx as nx
import numpy as np
import json
import sys
import random
def generate_tree(current_x, current_y, depth, max_depth, max_nodes, x_range, G, parent=None, node_count_per_depth=None):
"""Generates a tree of nodes with positions adjusted on the x-axis, y-axis, and number of nodes on the z-axis."""
if node_count_per_depth is None:
node_count_per_depth = {}
if depth > max_depth:
return node_count_per_depth
if depth not in node_count_per_depth:
node_count_per_depth[depth] = 0
num_children = random.randint(1, max_nodes)
x_positions = [current_x + i * x_range / (num_children + 1) for i in range(num_children)]
for x in x_positions:
node_id = len(G.nodes)
node_count_per_depth[depth] += 1
prob = random.uniform(0, 1)
G.add_node(node_id, pos=(x, prob, depth))
if parent is not None:
G.add_edge(parent, node_id)
generate_tree(x, current_y + 1, depth + 1, max_depth, max_nodes, x_range, G, parent=node_id, node_count_per_depth=node_count_per_depth)
return node_count_per_depth
def build_graph_from_json(json_data, G):
"""Builds a graph from JSON data."""
# data = json.loads(json_data) # No need to load JSON here
def add_event(parent_id, event_data, depth):
node_id = len(G.nodes)
prob = event_data['probability'] / 100.0
pos = (depth, prob, event_data['event_number'])
label = event_data['name']
G.add_node(node_id, pos=pos, label=label)
if parent_id is not None:
G.add_edge(parent_id, node_id)
subevents = event_data.get('subevents', {}).get('event', [])
if not isinstance(subevents, list):
subevents = [subevents]
for subevent in subevents:
add_event(node_id, subevent, depth + 1)
root_event = list(json_data.get('events', {}).values())[0] # Use json_data directly
root_id = len(G.nodes)
G.add_node(root_id, pos=(0, root_event['probability'] / 100.0, root_event['event_number']), label=root_event['name'])
add_event(None, root_event, 0)
def find_paths(G):
"""Finds paths with highest/lowest probability and longest/shortest durations."""
best_path, worst_path = None, None
longest_path, shortest_path = None, None
best_mean_prob, worst_mean_prob = -1, float('inf')
max_duration, min_duration = -1, float('inf')
# Use nx.all_pairs_shortest_path for efficiency
all_paths_dict = dict(nx.all_pairs_shortest_path(G))
for source, paths_from_source in all_paths_dict.items():
for target, path in paths_from_source.items():
if source != target and all('pos' in G.nodes[node] for node in path):
probabilities = [G.nodes[node]['pos'][1] for node in path]
mean_prob = np.mean(probabilities)
if mean_prob > best_mean_prob:
best_mean_prob = mean_prob
best_path = path
if mean_prob < worst_mean_prob:
worst_mean_prob = mean_prob
worst_path = path
x_positions = [G.nodes[node]['pos'][0] for node in path]
duration = max(x_positions) - min(x_positions)
if duration > max_duration:
max_duration = duration
longest_path = path
if duration < min_duration and duration > 0: # Avoid paths with 0 duration
min_duration = duration
shortest_path = path
return best_path, best_mean_prob, worst_path, worst_mean_prob, longest_path, shortest_path
def draw_path_3d(G, path, filename='path_plot_3d.png', highlight_color='blue'):
"""Draws a specific path in 3D."""
H = G.subgraph(path).copy()
pos = nx.get_node_attributes(G, 'pos')
x_vals, y_vals, z_vals = zip(*[pos[node] for node in path])
fig = plt.figure(figsize=(16, 12))
ax = fig.add_subplot(111, projection='3d')
node_colors = ['red' if prob < 0.33 else 'blue' if prob < 0.67 else 'green' for _, prob, _ in [pos[node] for node in path]]
ax.scatter(x_vals, y_vals, z_vals, c=node_colors, s=700, edgecolors='black', alpha=0.7)
for edge in H.edges():
x_start, y_start, z_start = pos[edge[0]]
x_end, y_end, z_end = pos[edge[1]]
ax.plot([x_start, x_end], [y_start, y_end], [z_start, z_end], color=highlight_color, lw=2)
for node, (x, y, z) in pos.items():
if node in path:
ax.text(x, y, z, str(node), fontsize=12, color='black')
ax.set_xlabel('Time (weeks)')
ax.set_ylabel('Event Probability')
ax.set_zlabel('Event Number')
ax.set_title('3D Event Tree - Path')
plt.savefig(filename, bbox_inches='tight')
plt.close()
def draw_global_tree_3d(G, filename='global_tree.png'):
"""Draws the entire graph in 3D."""
pos = nx.get_node_attributes(G, 'pos')
labels = nx.get_node_attributes(G, 'label')
if not pos:
print("Graph is empty. No nodes to visualize.")
return
x_vals, y_vals, z_vals = zip(*pos.values())
fig = plt.figure(figsize=(16, 12))
ax = fig.add_subplot(111, projection='3d')
node_colors = ['red' if prob < 0.33 else 'blue' if prob < 0.67 else 'green' for _, prob, _ in pos.values()]
ax.scatter(x_vals, y_vals, z_vals, c=node_colors, s=700, edgecolors='black', alpha=0.7)
for edge in G.edges():
x_start, y_start, z_start = pos[edge[0]]
x_end, y_end, z_end = pos[edge[1]]
ax.plot([x_start, x_end], [y_start, y_end], [z_start, z_end], color='gray', lw=2)
for node, (x, y, z) in pos.items():
label = labels.get(node, f"{node}")
ax.text(x, y, z, label, fontsize=12, color='black')
ax.set_xlabel('Time')
ax.set_ylabel('Probability')
ax.set_zlabel('Event Number')
ax.set_title('3D Event Tree')
plt.savefig(filename, bbox_inches='tight')
plt.close()
def main(json_data):
G = nx.DiGraph()
build_graph_from_json(json_data, G) # Build graph from the provided JSON data
draw_global_tree_3d(G, filename='global_tree.png')
best_path, best_mean_prob, worst_path, worst_mean_prob, longest_path, shortest_path = find_paths(G)
if best_path:
print(f"\nPath with the highest average probability: {' -> '.join(map(str, best_path))}")
print(f"Average probability: {best_mean_prob:.2f}")
if worst_path:
print(f"\nPath with the lowest average probability: {' -> '.join(map(str, worst_path))}")
print(f"Average probability: {worst_mean_prob:.2f}")
if longest_path:
print(f"\nPath with the longest duration: {' -> '.join(map(str, longest_path))}")
print(f"Duration: {max(G.nodes[node]['pos'][0] for node in longest_path) - min(G.nodes[node]['pos'][0] for node in longest_path):.2f}")
if shortest_path:
print(f"\nPath with the shortest duration: {' -> '.join(map(str, shortest_path))}")
print(f"Duration: {max(G.nodes[node]['pos'][0] for node in shortest_path) - min(G.nodes[node]['pos'][0] for node in shortest_path):.2f}")
if best_path:
draw_path_3d(G, best_path, 'best_path.png', 'blue')
if worst_path:
draw_path_3d(G, worst_path, 'worst_path.png', 'red')
if longest_path:
draw_path_3d(G, longest_path, 'longest_duration_path.png', 'green')
if shortest_path:
draw_path_3d(G, shortest_path, 'shortest_duration_path.png', 'purple')
return 'global_tree.png' # Return the filename of the global tree