events / psychohistory.py
cryptocalypse's picture
Update psychohistory.py
1c13cc9 verified
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import networkx as nx
import numpy as np
import json
import sys
import random
def build_graph_from_json(json_data, G):
"""Builds a graph from JSON data."""
def add_event(parent_id, event_data, depth):
"""Recursively adds events and subevents to the graph."""
# Add the current event node
node_id = len(G.nodes)
prob = event_data['probability'] / 100.0 # Convert percentage to probability
pos = (depth, prob, event_data['event_number']) # Use event_number for z position
label = event_data['name'] # Use event name as label
G.add_node(node_id, pos=pos, label=label)
if parent_id is not None:
G.add_edge(parent_id, node_id)
# Add child events
subevents = event_data.get('subevents', {}).get('event', [])
if not isinstance(subevents, list):
subevents = [subevents] # Ensure subevents is a list
for subevent in subevents:
add_event(node_id, subevent, depth + 1)
# Iterate through all top-level events (this is the corrected part)
for event_data in json_data.get('events', {}).values():
add_event(None, event_data, 0) # Add each event as a root node
def find_paths(G):
"""Finds the paths with the highest and lowest average probability,
and the longest and shortest durations in graph G."""
best_path = None
worst_path = None
longest_duration_path = None
shortest_duration_path = None
best_mean_prob = -1
worst_mean_prob = float('inf')
max_duration = -1
min_duration = float('inf')
for source in G.nodes:
for target in G.nodes:
if source != target:
all_paths = list(nx.all_simple_paths(G, source=source, target=target))
for path in all_paths:
# Check if all nodes in the path have the 'pos' attribute
if not all('pos' in G.nodes[node] for node in path):
continue # Skip paths with nodes missing the 'pos' attribute
# Calculate the mean probability of the path
probabilities = [G.nodes[node]['pos'][1] for node in path] # Get node probabilities
mean_prob = np.mean(probabilities)
# Evaluate path with the highest mean probability
if mean_prob > best_mean_prob:
best_mean_prob = mean_prob
best_path = path
# Evaluate path with the lowest mean probability
if mean_prob < worst_mean_prob:
worst_mean_prob = mean_prob
worst_path = path
# Calculate path duration
x_positions = [G.nodes[node]['pos'][0] for node in path]
duration = max(x_positions) - min(x_positions)
# Evaluate path with the longest duration
if duration > max_duration:
max_duration = duration
longest_duration_path = path
# Evaluate path with the shortest duration
if duration < min_duration:
min_duration = duration
shortest_duration_path = path
return best_path, best_mean_prob, worst_path, worst_mean_prob, longest_duration_path, shortest_duration_path
def draw_path_3d(G, path, filename='path_plot_3d.png', highlight_color='blue'):
"""Draws only the specific path in 3D using networkx and matplotlib
and saves the figure to a file."""
# Create a subgraph containing only the nodes and edges of the path
H = G.subgraph(path).copy()
pos = nx.get_node_attributes(G, 'pos')
# Get data for 3D visualization
x_vals, y_vals, z_vals = zip(*[pos[node] for node in path])
fig = plt.figure(figsize=(16, 12))
ax = fig.add_subplot(111, projection='3d')
# Assign colors to nodes based on probability
node_colors = []
for node in path:
prob = G.nodes[node]['pos'][1]
if prob < 0.33:
node_colors.append('red')
elif prob < 0.67:
node_colors.append('blue')
else:
node_colors.append('green')
# Draw nodes
ax.scatter(x_vals, y_vals, z_vals, c=node_colors, s=700, edgecolors='black', alpha=0.7)
# Draw edges
for edge in H.edges():
x_start, y_start, z_start = pos[edge[0]]
x_end, y_end, z_end = pos[edge[1]]
ax.plot([x_start, x_end], [y_start, y_end], [z_start, z_end], color=highlight_color, lw=2)
# Add labels to nodes
for node, (x, y, z) in pos.items():
if node in path:
ax.text(x, y, z, str(node), fontsize=12, color='black')
# Set labels and title
ax.set_xlabel('Time (weeks)')
ax.set_ylabel('Event Probability')
ax.set_zlabel('Event Number')
ax.set_title('3D Event Tree - Path')
plt.savefig(filename, bbox_inches='tight') # Save to file with adjusted margins
plt.close() # Close the figure to free resources
def draw_global_tree_3d(G, filename='global_tree.png'):
"""Draws the entire graph in 3D using networkx and matplotlib
and saves the figure to a file."""
pos = nx.get_node_attributes(G, 'pos')
labels = nx.get_node_attributes(G, 'label')
# Check if the graph is empty
if not pos:
print("Graph is empty. No nodes to visualize.")
return
# Get data for 3D visualization
x_vals, y_vals, z_vals = zip(*pos.values())
fig = plt.figure(figsize=(16, 12))
ax = fig.add_subplot(111, projection='3d')
# Assign colors to nodes based on probability
node_colors = []
for node, (x, prob, z) in pos.items():
if prob < 0.33:
node_colors.append('red')
elif prob < 0.67:
node_colors.append('blue')
else:
node_colors.append('green')
# Draw nodes
ax.scatter(x_vals, y_vals, z_vals, c=node_colors, s=700, edgecolors='black', alpha=0.7)
# Draw edges
for edge in G.edges():
x_start, y_start, z_start = pos[edge[0]]
x_end, y_end, z_end = pos[edge[1]]
ax.plot([x_start, x_end], [y_start, y_end], [z_start, z_end], color='gray', lw=2)
# Add labels to nodes
for node, (x, y, z) in pos.items():
label = labels.get(node, f"{node}")
ax.text(x, y, z, label, fontsize=12, color='black')
# Set labels and title
ax.set_xlabel('Time')
ax.set_ylabel('Probability')
ax.set_zlabel('Event Number')
ax.set_title('3D Event Tree')
plt.savefig(filename, bbox_inches='tight') # Save to file with adjusted margins
plt.close() # Close the figure to free resources
def main(json_data):
G = nx.DiGraph()
build_graph_from_json(json_data, G) # Build graph from the provided JSON data
draw_global_tree_3d(G, filename='global_tree.png')
best_path, best_mean_prob, worst_path, worst_mean_prob, longest_path, shortest_path = find_paths(G)
if best_path:
print(f"\nPath with the highest average probability: {' -> '.join(map(str, best_path))}")
print(f"Average probability: {best_mean_prob:.2f}")
if worst_path:
print(f"\nPath with the lowest average probability: {' -> '.join(map(str, worst_path))}")
print(f"Average probability: {worst_mean_prob:.2f}")
if longest_path:
print(f"\nPath with the longest duration: {' -> '.join(map(str, longest_path))}")
print(f"Duration: {max(G.nodes[node]['pos'][0] for node in longest_path) - min(G.nodes[node]['pos'][0] for node in longest_path):.2f}")
if shortest_path:
print(f"\nPath with the shortest duration: {' -> '.join(map(str, shortest_path))}")
print(f"Duration: {max(G.nodes[node]['pos'][0] for node in shortest_path) - min(G.nodes[node]['pos'][0] for node in shortest_path):.2f}")
if best_path:
draw_path_3d(G, best_path, 'best_path.png', 'blue')
if worst_path:
draw_path_3d(G, worst_path, 'worst_path.png', 'red')
if longest_path:
draw_path_3d(G, longest_path, 'longest_duration_path.png', 'green')
if shortest_path:
draw_path_3d(G, shortest_path, 'shortest_duration_path.png', 'purple')
return ('global_tree.png','best_path.png','longest_duration_path.png') # Return the filename of the global tree