psychohistory / psychohistory.py
cryptocalypse
Update psychohistory.py
6840d6b verified
raw
history blame
11.1 kB
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import networkx as nx
import numpy as np
import json
import sys
import random
def generate_tree(current_x, current_y, depth, max_depth, max_nodes, x_range, G, parent=None, node_count_per_depth=None):
"""Generates a tree of nodes with positions adjusted on the x-axis, y-axis, and number of nodes on the z-axis."""
if node_count_per_depth is None:
node_count_per_depth = {}
if depth not in node_count_per_depth:
node_count_per_depth[depth] = 0
if depth > max_depth:
return node_count_per_depth
num_children = random.randint(1, max_nodes)
x_positions = [current_x + i * x_range / (num_children + 1) for i in range(num_children)]
for x in x_positions:
# Add node to the graph
node_id = len(G.nodes)
node_count_per_depth[depth] += 1
prob = random.uniform(0, 1) # Assign random probability
G.add_node(node_id, pos=(x, prob, depth)) # Use `depth` for z position
if parent is not None:
G.add_edge(parent, node_id)
# Recursively add child nodes
generate_tree(x, current_y + 1, depth + 1, max_depth, max_nodes, x_range, G, parent=node_id, node_count_per_depth=node_count_per_depth)
return node_count_per_depth
def build_graph_from_json(json_data, G):
"""Builds a graph from JSON data."""
def add_event(parent_id, event_data, depth):
"""Recursively adds events and subevents to the graph."""
# Add the current event node
node_id = len(G.nodes)
prob = event_data['probability'] / 100.0 # Convert percentage to probability
pos = (depth, prob, event_data['event_number']) # Use event_number for z position
label = event_data['name'] # Use event name as label
G.add_node(node_id, pos=pos, label=label)
if parent_id is not None:
G.add_edge(parent_id, node_id)
# Add child events
subevents = event_data.get('subevents', {}).get('event', [])
if not isinstance(subevents, list):
subevents = [subevents] # Ensure subevents is a list
for subevent in subevents:
add_event(node_id, subevent, depth + 1)
data = json.loads(json_data)
root_id = len(G.nodes)
root_event = list(data.get('events', {}).values())[0]
G.add_node(root_id, pos=(0, root_event['probability'] / 100.0, root_event['event_number']), label=root_event['name'])
add_event(None, root_event, 0) # Start from the root
def find_paths(G):
"""Finds the paths with the highest and lowest average probability, and the longest and shortest durations in graph G."""
best_path = None
worst_path = None
longest_duration_path = None
shortest_duration_path = None
best_mean_prob = -1
worst_mean_prob = float('inf')
max_duration = -1
min_duration = float('inf')
for source in G.nodes:
for target in G.nodes:
if source != target:
all_paths = list(nx.all_simple_paths(G, source=source, target=target))
for path in all_paths:
# Check if all nodes in the path have the 'pos' attribute
if not all('pos' in G.nodes[node] for node in path):
continue # Skip paths with nodes missing the 'pos' attribute
# Calculate the mean probability of the path
probabilities = [G.nodes[node]['pos'][1] for node in path] # Get node probabilities
mean_prob = np.mean(probabilities)
# Evaluate path with the highest mean probability
if mean_prob > best_mean_prob:
best_mean_prob = mean_prob
best_path = path
# Evaluate path with the lowest mean probability
if mean_prob < worst_mean_prob:
worst_mean_prob = mean_prob
worst_path = path
# Calculate path duration
x_positions = [G.nodes[node]['pos'][0] for node in path]
duration = max(x_positions) - min(x_positions)
# Evaluate path with the longest duration
if duration > max_duration:
max_duration = duration
longest_duration_path = path
# Evaluate path with the shortest duration
if duration < min_duration:
min_duration = duration
shortest_duration_path = path
return best_path, best_mean_prob, worst_path, worst_mean_prob, longest_duration_path, shortest_duration_path
def draw_path_3d(G, path, filename='path_plot_3d.png', highlight_color='blue'):
"""Draws only the specific path in 3D using networkx and matplotlib and saves the figure to a file."""
# Create a subgraph containing only the nodes and edges of the path
H = G.subgraph(path).copy()
pos = nx.get_node_attributes(G, 'pos')
# Get data for 3D visualization
x_vals, y_vals, z_vals = zip(*[pos[node] for node in path])
fig = plt.figure(figsize=(16, 12))
ax = fig.add_subplot(111, projection='3d')
# Assign colors to nodes based on probability
node_colors = []
for node in path:
prob = G.nodes[node]['pos'][1]
if prob < 0.33:
node_colors.append('red')
elif prob < 0.67:
node_colors.append('blue')
else:
node_colors.append('green')
# Draw nodes
ax.scatter(x_vals, y_vals, z_vals, c=node_colors, s=700, edgecolors='black', alpha=0.7)
# Draw edges
for edge in H.edges():
x_start, y_start, z_start = pos[edge[0]]
x_end, y_end, z_end = pos[edge[1]]
ax.plot([x_start, x_end], [y_start, y_end], [z_start, z_end], color=highlight_color, lw=2)
# Add labels to nodes
for node, (x, y, z) in pos.items():
if node in path:
ax.text(x, y, z, str(node), fontsize=12, color='black')
# Set labels and title
ax.set_xlabel('Time (weeks)')
ax.set_ylabel('Event Probability')
ax.set_zlabel('Event Number')
ax.set_title('3D Event Tree - Path')
plt.savefig(filename, bbox_inches='tight') # Save to file with adjusted margins
plt.close() # Close the figure to free resources
def draw_global_tree_3d(G, filename='global_tree.png'):
"""Draws the entire graph in 3D using networkx and matplotlib and saves the figure to a file."""
pos = nx.get_node_attributes(G, 'pos')
labels = nx.get_node_attributes(G, 'label')
# Check if the graph is empty
if not pos:
print("Graph is empty. No nodes to visualize.")
return
# Get data for 3D visualization
x_vals, y_vals, z_vals = zip(*pos.values())
fig = plt.figure(figsize=(16, 12))
ax = fig.add_subplot(111, projection='3d')
# Assign colors to nodes based on probability
node_colors = []
for node, (x, prob, z) in pos.items():
if prob < 0.33:
node_colors.append('red')
elif prob < 0.67:
node_colors.append('blue')
else:
node_colors.append('green')
# Draw nodes
ax.scatter(x_vals, y_vals, z_vals, c=node_colors, s=700, edgecolors='black', alpha=0.7)
# Draw edges
for edge in G.edges():
x_start, y_start, z_start = pos[edge[0]]
x_end, y_end, z_end = pos[edge[1]]
ax.plot([x_start, x_end], [y_start, y_end], [z_start, z_end], color='gray', lw=2)
# Add labels to nodes
for node, (x, y, z) in pos.items():
label = labels.get(node, f"{node}")
ax.text(x, y, z, label, fontsize=12, color='black')
# Set labels and title
ax.set_xlabel('Time')
ax.set_ylabel('Probability')
ax.set_zlabel('Event Number')
ax.set_title('3D Event Tree')
plt.savefig(filename, bbox_inches='tight') # Save to file with adjusted margins
plt.close() # Close the figure to free resources
def main(mode, input_file=None):
G = nx.DiGraph()
if mode == 'random':
starting_x = 0
starting_y = 0
max_depth = 5 # Maximum depth of the tree
max_nodes = 3 # Maximum number of child nodes
x_range = 10 # Maximum range for x position of nodes
# Generate the tree and get node count per depth
generate_tree(starting_x, starting_y, 0, max_depth, max_nodes, x_range, G)
elif mode == 'json' and input_file:
with open(input_file, 'r') as file:
json_data = file.read()
build_graph_from_json(json_data, G)
else:
print("Invalid mode or input file not provided.")
return
# Save the global visualization
draw_global_tree_3d(G, filename='global_tree.png')
# Find relevant paths
best_path, best_mean_prob, worst_path, worst_mean_prob, longest_duration_path, shortest_duration_path = find_paths(G)
# Print results
if best_path:
print(f"\nPath with the highest average probability:")
print(" -> ".join(map(str, best_path)))
print(f"Average probability: {best_mean_prob:.2f}")
if worst_path:
print(f"\nPath with the lowest average probability:")
print(" -> ".join(map(str, worst_path)))
print(f"Average probability: {worst_mean_prob:.2f}")
if longest_duration_path:
print(f"\nPath with the longest duration:")
print(" -> ".join(map(str, longest_duration_path)))
print(f"Duration: {max(G.nodes[node]['pos'][0] for node in longest_duration_path) - min(G.nodes[node]['pos'][0] for node in longest_duration_path):.2f}")
if shortest_duration_path:
print(f"\nPath with the shortest duration:")
print(" -> ".join(map(str, shortest_duration_path)))
print(f"Duration: {max(G.nodes[node]['pos'][0] for node in shortest_duration_path) - min(G.nodes[node]['pos'][0] for node in shortest_duration_path):.2f}")
# Save the global visualization
draw_global_tree_3d(G, filename='global_tree.png')
# Draw and save the 3D figure for each relevant path
if best_path:
draw_path_3d(G, path=best_path, filename='best_path.png', highlight_color='blue')
if worst_path:
draw_path_3d(G, path=worst_path, filename='worst_path.png', highlight_color='red')
if longest_duration_path:
draw_path_3d(G, path=longest_duration_path, filename='longest_duration_path.png', highlight_color='green')
if shortest_duration_path:
draw_path_3d(G, path=shortest_duration_path, filename='shortest_duration_path.png', highlight_color='purple')
if __name__ == "__main__":
if len(sys.argv) < 2:
print("Usage: python script.py <mode> [input_file]")
else:
mode = sys.argv[1]
input_file = sys.argv[2] if len(sys.argv) > 2 else None
main(mode, input_file)