import gradio as gr from huggingface_hub import InferenceClient import gen import psychohistory """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ with gr.Blocks(title="PSYCHOHISTORY") as app: with gr.Tab("Search"): with gr.Row(): txt_search = gr.Textbox(value="Iran and Israel war",label="Search Term",scale=5) btn_search = gr.Button("Look",scale=1) with gr.Row(): #search_results = gr.Dataframe(type="pandas") mem_results = gr.JSON(label="Results") btn_search.click( gen.generate, inputs=[txt_search], outputs=mem_results ) #with gr.Row(): # big_block = gr.HTML(""" # # """) with gr.Tab("Graph"): gr.load("models/stabilityai/stable-diffusion-xl-base-1.0") with gr.Tab("Chat"): gr.ChatInterface( respond, ) if __name__ == "__main__": app.launch()