metric / loaders.py
Elron's picture
Upload folder using huggingface_hub
cc5f321 verified
"""This section describes unitxt loaders.
Loaders: Generators of Unitxt Multistreams from existing date sources
==============================================================
Unitxt is all about readily preparing of any given data source for feeding into any given language model, and then,
post-processing the model's output, preparing it for any given evaluator.
Through that journey, the data advances in the form of Unitxt Multistream, undergoing a sequential application
of various off-the-shelf operators (i.e., picked from Unitxt catalog), or operators easily implemented by inheriting.
The journey starts by a Unitxt Loader bearing a Multistream from the given datasource.
A loader, therefore, is the first item on any Unitxt Recipe.
Unitxt catalog contains several loaders for the most popular datasource formats.
All these loaders inherit from Loader, and hence, implementing a loader to expand over a new type of datasource is
straightforward.
Available Loaders Overview:
- :ref:`LoadHF <unitxt.loaders.LoadHF>` - Loads data from HuggingFace Datasets.
- :ref:`LoadCSV <unitxt.loaders.LoadCSV>` - Imports data from CSV (Comma-Separated Values) files.
- :ref:`LoadFromKaggle <unitxt.loaders.LoadFromKaggle>` - Retrieves datasets from the Kaggle community site.
- :ref:`LoadFromIBMCloud <unitxt.loaders.LoadFromIBMCloud>` - Fetches datasets hosted on IBM Cloud.
- :ref:`LoadFromSklearn <unitxt.loaders.LoadFromSklearn>` - Loads datasets available through the sklearn library.
- :ref:`MultipleSourceLoader <unitxt.loaders.MultipleSourceLoader>` - Combines data from multiple different sources.
- :ref:`LoadFromDictionary <unitxt.loaders.LoadFromDictionary>` - Loads data from a user-defined Python dictionary.
- :ref:`LoadFromHFSpace <unitxt.loaders.LoadFromHFSpace>` - Downloads and loads data from HuggingFace Spaces.
------------------------
"""
import fnmatch
import itertools
import os
import tempfile
from abc import abstractmethod
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import Any, Dict, List, Mapping, Optional, Sequence, Union
import pandas as pd
from datasets import load_dataset as hf_load_dataset
from huggingface_hub import HfApi
from tqdm import tqdm
from .dataclass import InternalField, OptionalField
from .fusion import FixedFusion
from .logging_utils import get_logger
from .operator import SourceOperator
from .operators import Set
from .settings_utils import get_settings
from .stream import DynamicStream, MultiStream
from .type_utils import isoftype
from .utils import recursive_copy
logger = get_logger()
settings = get_settings()
class Loader(SourceOperator):
"""A base class for all loaders.
A loader is the first component in the Unitxt Recipe,
responsible for loading data from various sources and preparing it as a MultiStream for processing.
The loader_limit is an optional parameter used to control the maximum number of instances to load from the data source. It is applied for each split separately.
It is usually provided to the loader via the recipe (see standard.py)
The loader can use this value to limit the amount of data downloaded from the source
to reduce loading time. However, this may not always be possible, so the
loader may ignore this. In any case, the recipe, will limit the number of instances in the returned
stream, after load is complete.
Args:
loader_limit: Optional integer to specify a limit on the number of records to load.
streaming: Bool indicating if streaming should be used.
num_proc: Optional integer to specify the number of processes to use for parallel dataset loading. Adjust the value according to the number of CPU cores available and the specific needs of your processing task.
"""
loader_limit: int = None
streaming: bool = False
num_proc: int = None
def get_limit(self):
if settings.global_loader_limit is not None and self.loader_limit is not None:
return min(int(settings.global_loader_limit), self.loader_limit)
if settings.global_loader_limit is not None:
return int(settings.global_loader_limit)
return self.loader_limit
def get_limiter(self):
if settings.global_loader_limit is not None and self.loader_limit is not None:
if int(settings.global_loader_limit) > self.loader_limit:
return f"{self.__class__.__name__}.loader_limit"
return "unitxt.settings.global_loader_limit"
if settings.global_loader_limit is not None:
return "unitxt.settings.global_loader_limit"
return f"{self.__class__.__name__}.loader_limit"
def log_limited_loading(self):
logger.info(
f"\nLoading limited to {self.get_limit()} instances by setting {self.get_limiter()};"
)
def add_data_classification(self, multi_stream: MultiStream) -> MultiStream:
if self.data_classification_policy is None:
get_logger().warning(
f"The {self.get_pretty_print_name()} loader does not set the `data_classification_policy`. "
f"This may lead to sending of undesired data to external services.\n"
f"Set it to a list of classification identifiers. \n"
f"For example:\n"
f"data_classification_policy = ['public']\n"
f" or \n"
f"data_classification_policy =['confidential','pii'])\n"
)
operator = Set(
fields={"data_classification_policy": self.data_classification_policy}
)
return operator(multi_stream)
def sef_default_data_classification(
self, default_data_classification_policy, additional_info
):
if self.data_classification_policy is None:
logger.info(
f"{self.get_pretty_print_name()} sets 'data_classification_policy' to "
f"{default_data_classification_policy} by default {additional_info}.\n"
"To use a different value or remove this message, explicitly set the "
"`data_classification_policy` attribute of the loader.\n"
)
self.data_classification_policy = default_data_classification_policy
@abstractmethod
def load_data(self):
pass
def process(self) -> MultiStream:
return self.add_data_classification(self.load_data())
class LoadHF(Loader):
"""Loads datasets from the HuggingFace Hub.
It supports loading with or without streaming,
and it can filter datasets upon loading.
Args:
path: The path or identifier of the dataset on the HuggingFace Hub.
name: An optional dataset name.
data_dir: Optional directory to store downloaded data.
split: Optional specification of which split to load.
data_files: Optional specification of particular data files to load.
revision: Optional. The revision of the dataset. Often the commit id. Use in case you want to set the dataset version.
streaming: Bool indicating if streaming should be used.
filtering_lambda: A lambda function for filtering the data after loading.
num_proc: Optional integer to specify the number of processes to use for parallel dataset loading.
Example:
Loading glue's mrpc dataset
.. code-block:: python
load_hf = LoadHF(path='glue', name='mrpc')
"""
path: str
name: Optional[str] = None
data_dir: Optional[str] = None
split: Optional[str] = None
data_files: Optional[
Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]
] = None
revision: Optional[str] = None
streaming: bool = True
filtering_lambda: Optional[str] = None
num_proc: Optional[int] = None
_cache: dict = InternalField(default=None)
requirements_list: List[str] = OptionalField(default_factory=list)
def verify(self):
for requirement in self.requirements_list:
if requirement not in self._requirements_list:
self._requirements_list.append(requirement)
super().verify()
def filter_load(self, dataset):
if not settings.allow_unverified_code:
raise ValueError(
f"{self.__class__.__name__} cannot run use filtering_lambda expression without setting unitxt.settings.allow_unverified_code=True or by setting environment variable: UNITXT_ALLOW_UNVERIFIED_CODE."
)
logger.info(f"\nLoading filtered by: {self.filtering_lambda};")
return dataset.filter(eval(self.filtering_lambda))
def stream_dataset(self):
if self._cache is None:
with tempfile.TemporaryDirectory() as dir_to_be_deleted:
if settings.disable_hf_datasets_cache and not self.streaming:
cache_dir = dir_to_be_deleted
else:
cache_dir = None
try:
dataset = hf_load_dataset(
self.path,
name=self.name,
data_dir=self.data_dir,
data_files=self.data_files,
revision=self.revision,
streaming=self.streaming,
cache_dir=cache_dir,
split=self.split,
trust_remote_code=settings.allow_unverified_code,
num_proc=self.num_proc,
)
except ValueError as e:
if "trust_remote_code" in str(e):
raise ValueError(
f"{self.__class__.__name__} cannot run remote code from huggingface without setting unitxt.settings.allow_unverified_code=True or by setting environment variable: UNITXT_ALLOW_UNVERIFIED_CODE."
) from e
raise e
if self.split is not None:
dataset = {self.split: dataset}
self._cache = dataset
else:
dataset = self._cache
if self.filtering_lambda is not None:
dataset = self.filter_load(dataset)
return dataset
def load_dataset(self):
if self._cache is None:
with tempfile.TemporaryDirectory() as dir_to_be_deleted:
if settings.disable_hf_datasets_cache:
cache_dir = dir_to_be_deleted
else:
cache_dir = None
try:
dataset = hf_load_dataset(
self.path,
name=self.name,
data_dir=self.data_dir,
data_files=self.data_files,
streaming=False,
keep_in_memory=True,
cache_dir=cache_dir,
split=self.split,
trust_remote_code=settings.allow_unverified_code,
num_proc=self.num_proc,
)
except ValueError as e:
if "trust_remote_code" in str(e):
raise ValueError(
f"{self.__class__.__name__} cannot run remote code from huggingface without setting unitxt.settings.allow_unverified_code=True or by setting environment variable: UNITXT_ALLOW_UNVERIFIED_CODE."
) from e
if self.split is None:
for split in dataset.keys():
dataset[split] = dataset[split].to_iterable_dataset()
else:
dataset = {self.split: dataset}
self._cache = dataset
else:
dataset = self._cache
if self.filtering_lambda is not None:
dataset = self.filter_load(dataset)
return dataset
def split_limited_load(self, dataset, split_name):
yield from itertools.islice(dataset[split_name], self.get_limit())
def limited_load(self, dataset):
self.log_limited_loading()
return MultiStream(
{
name: DynamicStream(
generator=self.split_limited_load,
gen_kwargs={"dataset": dataset, "split_name": name},
)
for name in self._cache.keys()
}
)
def load_data(self):
if os.path.exists(self.path):
self.sef_default_data_classification(
["proprietary"], "when loading from local files"
)
else:
self.sef_default_data_classification(
["public"], "when loading from Huggingface hub"
)
try:
dataset = self.stream_dataset()
except (
NotImplementedError
): # streaming is not supported for zipped files so we load without streaming
dataset = self.load_dataset()
if self.get_limit() is not None:
return self.limited_load(dataset=dataset)
return MultiStream.from_iterables(dataset)
class LoadCSV(Loader):
"""Loads data from CSV files.
Supports streaming and can handle large files by loading them in chunks.
Args:
files (Dict[str, str]): A dictionary mapping names to file paths.
chunksize : Size of the chunks to load at a time.
loader_limit: Optional integer to specify a limit on the number of records to load.
streaming: Bool indicating if streaming should be used.
sep: String specifying the separator used in the CSV files.
Example:
Loading csv
.. code-block:: python
load_csv = LoadCSV(files={'train': 'path/to/train.csv'}, chunksize=100)
"""
files: Dict[str, str]
chunksize: int = 1000
_cache = InternalField(default_factory=dict)
loader_limit: Optional[int] = None
streaming: bool = True
sep: str = ","
def stream_csv(self, file):
if self.get_limit() is not None:
self.log_limited_loading()
chunksize = min(self.get_limit(), self.chunksize)
else:
chunksize = self.chunksize
row_count = 0
for chunk in pd.read_csv(file, chunksize=chunksize, sep=self.sep):
for _, row in chunk.iterrows():
if self.get_limit() is not None and row_count >= self.get_limit():
return
yield row.to_dict()
row_count += 1
def load_csv(self, file):
if file not in self._cache:
if self.get_limit() is not None:
self.log_limited_loading()
self._cache[file] = pd.read_csv(
file, nrows=self.get_limit(), sep=self.sep
).to_dict("records")
else:
self._cache[file] = pd.read_csv(file).to_dict("records")
yield from self._cache[file]
def load_data(self):
self.sef_default_data_classification(
["proprietary"], "when loading from local files"
)
if self.streaming:
return MultiStream(
{
name: DynamicStream(
generator=self.stream_csv, gen_kwargs={"file": file}
)
for name, file in self.files.items()
}
)
return MultiStream(
{
name: DynamicStream(generator=self.load_csv, gen_kwargs={"file": file})
for name, file in self.files.items()
}
)
class LoadFromSklearn(Loader):
"""Loads datasets from the sklearn library.
This loader does not support streaming and is intended for use with sklearn's dataset fetch functions.
Args:
dataset_name: The name of the sklearn dataset to fetch.
splits: A list of data splits to load, e.g., ['train', 'test'].
Example:
Loading form sklearn
.. code-block:: python
load_sklearn = LoadFromSklearn(dataset_name='iris', splits=['train', 'test'])
"""
dataset_name: str
splits: List[str] = ["train", "test"]
_requirements_list: List[str] = ["sklearn", "pandas"]
def verify(self):
super().verify()
if self.streaming:
raise NotImplementedError("LoadFromSklearn cannot load with streaming.")
def prepare(self):
super().prepare()
from sklearn import datasets as sklearn_datatasets
self.downloader = getattr(sklearn_datatasets, f"fetch_{self.dataset_name}")
def load_data(self):
with TemporaryDirectory() as temp_directory:
for split in self.splits:
split_data = self.downloader(subset=split)
targets = [split_data["target_names"][t] for t in split_data["target"]]
df = pd.DataFrame([split_data["data"], targets]).T
df.columns = ["data", "target"]
df.to_csv(os.path.join(temp_directory, f"{split}.csv"), index=None)
dataset = hf_load_dataset(temp_directory, streaming=False)
return MultiStream.from_iterables(dataset)
class MissingKaggleCredentialsError(ValueError):
pass
class LoadFromKaggle(Loader):
"""Loads datasets from Kaggle.
Requires Kaggle API credentials and does not support streaming.
Args:
url: URL to the Kaggle dataset.
Example:
Loading from kaggle
.. code-block:: python
load_kaggle = LoadFromKaggle(url='kaggle.com/dataset/example')
"""
url: str
_requirements_list: List[str] = ["opendatasets"]
data_classification_policy = ["public"]
def verify(self):
super().verify()
if not os.path.isfile("kaggle.json"):
raise MissingKaggleCredentialsError(
"Please obtain kaggle credentials https://christianjmills.com/posts/kaggle-obtain-api-key-tutorial/ and save them to local ./kaggle.json file"
)
if self.streaming:
raise NotImplementedError("LoadFromKaggle cannot load with streaming.")
def prepare(self):
super().prepare()
from opendatasets import download
self.downloader = download
def load_data(self):
with TemporaryDirectory() as temp_directory:
self.downloader(self.url, temp_directory)
dataset = hf_load_dataset(temp_directory, streaming=False)
return MultiStream.from_iterables(dataset)
class LoadFromIBMCloud(Loader):
"""Loads data from IBM Cloud Object Storage.
Does not support streaming and requires AWS-style access keys.
data_dir Can be either:
1. a list of file names, the split of each file is determined by the file name pattern
2. Mapping: split -> file_name, e.g. {"test" : "test.json", "train": "train.json"}
3. Mapping: split -> file_names, e.g. {"test" : ["test1.json", "test2.json"], "train": ["train.json"]}
Args:
endpoint_url_env: Environment variable name for the IBM Cloud endpoint URL.
aws_access_key_id_env: Environment variable name for the AWS access key ID.
aws_secret_access_key_env: Environment variable name for the AWS secret access key.
bucket_name: Name of the S3 bucket from which to load data.
data_dir: Optional directory path within the bucket.
data_files: Union type allowing either a list of file names or a mapping of splits to file names.
data_field: The dataset key for nested JSON file, i.e. when multiple datasets are nested in the same file
caching: Bool indicating if caching is enabled to avoid re-downloading data.
Example:
Loading from IBM Cloud
.. code-block:: python
load_ibm_cloud = LoadFromIBMCloud(
endpoint_url_env='IBM_CLOUD_ENDPOINT',
aws_access_key_id_env='IBM_AWS_ACCESS_KEY_ID',
aws_secret_access_key_env='IBM_AWS_SECRET_ACCESS_KEY',
bucket_name='my-bucket'
)
multi_stream = load_ibm_cloud.process()
"""
endpoint_url_env: str
aws_access_key_id_env: str
aws_secret_access_key_env: str
bucket_name: str
data_dir: str = None
data_files: Union[Sequence[str], Mapping[str, Union[str, Sequence[str]]]]
data_field: str = None
caching: bool = True
data_classification_policy = ["proprietary"]
_requirements_list: List[str] = ["ibm_boto3"]
def _download_from_cos(self, cos, bucket_name, item_name, local_file):
logger.info(f"Downloading {item_name} from {bucket_name} COS")
try:
response = cos.Object(bucket_name, item_name).get()
size = response["ContentLength"]
body = response["Body"]
except Exception as e:
raise Exception(
f"Unabled to access {item_name} in {bucket_name} in COS", e
) from e
if self.get_limit() is not None:
if item_name.endswith(".jsonl"):
first_lines = list(
itertools.islice(body.iter_lines(), self.get_limit())
)
with open(local_file, "wb") as downloaded_file:
for line in first_lines:
downloaded_file.write(line)
downloaded_file.write(b"\n")
logger.info(
f"\nDownload successful limited to {self.get_limit()} lines"
)
return
progress_bar = tqdm(total=size, unit="iB", unit_scale=True)
def upload_progress(chunk):
progress_bar.update(chunk)
try:
cos.Bucket(bucket_name).download_file(
item_name, local_file, Callback=upload_progress
)
logger.info("\nDownload Successful")
except Exception as e:
raise Exception(
f"Unabled to download {item_name} in {bucket_name}", e
) from e
def prepare(self):
super().prepare()
self.endpoint_url = os.getenv(self.endpoint_url_env)
self.aws_access_key_id = os.getenv(self.aws_access_key_id_env)
self.aws_secret_access_key = os.getenv(self.aws_secret_access_key_env)
root_dir = os.getenv("UNITXT_IBM_COS_CACHE", None) or os.getcwd()
self.cache_dir = os.path.join(root_dir, "ibmcos_datasets")
if not os.path.exists(self.cache_dir):
Path(self.cache_dir).mkdir(parents=True, exist_ok=True)
self.verified = False
def lazy_verify(self):
super().verify()
assert (
self.endpoint_url is not None
), f"Please set the {self.endpoint_url_env} environmental variable"
assert (
self.aws_access_key_id is not None
), f"Please set {self.aws_access_key_id_env} environmental variable"
assert (
self.aws_secret_access_key is not None
), f"Please set {self.aws_secret_access_key_env} environmental variable"
if self.streaming:
raise NotImplementedError("LoadFromKaggle cannot load with streaming.")
def load_data(self):
if not self.verified:
self.lazy_verify()
self.verified = True
self.sef_default_data_classification(
["proprietary"], "when loading from IBM COS"
)
import ibm_boto3
cos = ibm_boto3.resource(
"s3",
aws_access_key_id=self.aws_access_key_id,
aws_secret_access_key=self.aws_secret_access_key,
endpoint_url=self.endpoint_url,
)
local_dir = os.path.join(
self.cache_dir,
self.bucket_name,
self.data_dir or "", # data_dir can be None
f"loader_limit_{self.get_limit()}",
)
if not os.path.exists(local_dir):
Path(local_dir).mkdir(parents=True, exist_ok=True)
if isinstance(self.data_files, Mapping):
data_files_names = list(self.data_files.values())
if not isinstance(data_files_names[0], str):
data_files_names = list(itertools.chain(*data_files_names))
else:
data_files_names = self.data_files
for data_file in data_files_names:
local_file = os.path.join(local_dir, data_file)
if not self.caching or not os.path.exists(local_file):
# Build object key based on parameters. Slash character is not
# allowed to be part of object key in IBM COS.
object_key = (
self.data_dir + "/" + data_file
if self.data_dir is not None
else data_file
)
with tempfile.NamedTemporaryFile() as temp_file:
# Download to a temporary file in same file partition, and then do an atomic move
self._download_from_cos(
cos,
self.bucket_name,
object_key,
local_dir + "/" + os.path.basename(temp_file.name),
)
os.renames(
local_dir + "/" + os.path.basename(temp_file.name),
local_dir + "/" + data_file,
)
if isinstance(self.data_files, list):
dataset = hf_load_dataset(local_dir, streaming=False, field=self.data_field)
else:
dataset = hf_load_dataset(
local_dir,
streaming=False,
data_files=self.data_files,
field=self.data_field,
)
return MultiStream.from_iterables(dataset)
class MultipleSourceLoader(Loader):
"""Allows loading data from multiple sources, potentially mixing different types of loaders.
Args:
sources: A list of loaders that will be combined to form a unified dataset.
Examples:
1) Loading the train split from a HuggingFace Hub and the test set from a local file:
.. code-block:: python
MultipleSourceLoader(sources = [ LoadHF(path="public/data",split="train"), LoadCSV({"test": "mytest.csv"}) ])
2) Loading a test set combined from two files
.. code-block:: python
MultipleSourceLoader(sources = [ LoadCSV({"test": "mytest1.csv"}, LoadCSV({"test": "mytest2.csv"}) ])
"""
sources: List[Loader]
# MultipleSourceLoaders uses the the data classification from source loaders,
# so only need to add it, if explicitly requested to override.
def add_data_classification(self, multi_stream: MultiStream) -> MultiStream:
if self.data_classification_policy is None:
return multi_stream
return super().add_data_classification(multi_stream)
def load_data(self):
return FixedFusion(
subsets=self.sources, max_instances_per_subset=self.get_limit()
).process()
class LoadFromDictionary(Loader):
"""Allows loading data from a dictionary of constants.
The loader can be used, for example, when debugging or working with small datasets.
Args:
data (Dict[str, List[Dict[str, Any]]]): a dictionary of constants from which the data will be loaded
Example:
Loading dictionary
.. code-block:: python
data = {
"train": [{"input": "SomeInput1", "output": "SomeResult1"},
{"input": "SomeInput2", "output": "SomeResult2"}],
"test": [{"input": "SomeInput3", "output": "SomeResult3"},
{"input": "SomeInput4", "output": "SomeResult4"}]
}
loader = LoadFromDictionary(data=data)
"""
data: Dict[str, List[Dict[str, Any]]]
def verify(self):
super().verify()
if not isoftype(self.data, Dict[str, List[Dict[str, Any]]]):
raise ValueError(
f"Passed data to LoadFromDictionary is not of type Dict[str, List[Dict[str, Any]]].\n"
f"Expected data should map between split name and list of instances.\n"
f"Received value: {self.data}\n"
)
for split in self.data.keys():
if len(self.data[split]) == 0:
raise ValueError(f"Split {split} has no instances.")
first_instance = self.data[split][0]
for instance in self.data[split]:
if instance.keys() != first_instance.keys():
raise ValueError(
f"Not all instances in split '{split}' have the same fields.\n"
f"instance {instance} has different fields different from {first_instance}"
)
def load_data(self) -> MultiStream:
self.sef_default_data_classification(
["proprietary"], "when loading from python dictionary"
)
return MultiStream.from_iterables(recursive_copy(self.data))
class LoadFromHFSpace(LoadHF):
"""Used to load data from HuggingFace Spaces.
Loaders firstly tries to download all files specified in the 'data_files' parameter
from the given space and then reads them as a HuggingFace Dataset.
Args:
space_name (str): Name of the HuggingFace Space to be accessed.
data_files (str | Sequence[str] | Mapping[str, str | Sequence[str]]): Relative
paths to files within a given repository. If given as a mapping, paths should
be values, while keys should represent the type of respective files
(training, testing etc.).
path (str, optional): Absolute path to a directory where data should be downloaded.
revision (str, optional): ID of a Git branch or commit to be used. By default, it is
set to None, thus data is downloaded from the main branch of the accessed
repository.
use_token (bool, optional): Whether a token is used for authentication when accessing
the HuggingFace Space. If necessary, the token is read from the HuggingFace
config folder.
token_env (str, optional): Key of an env variable which value will be used for
authentication when accessing the HuggingFace Space - if necessary.
Example:
Loading from a HuggingFace Space
.. code-block:: python
loader = LoadFromHFSpace(
space_name="lmsys/mt-bench",
data_files={
"train": [
"data/mt_bench/model_answer/gpt-3.5-turbo.jsonl",
"data/mt_bench/model_answer/gpt-4.jsonl",
],
"test": "data/mt_bench/model_answer/tulu-30b.jsonl",
},
)
"""
space_name: str
data_files: Union[str, Sequence[str], Mapping[str, Union[str, Sequence[str]]]]
path: Optional[str] = None
revision: Optional[str] = None
use_token: Optional[bool] = None
token_env: Optional[str] = None
requirements_list: List[str] = ["huggingface_hub"]
def _get_token(self) -> Optional[Union[bool, str]]:
if self.token_env:
token = os.getenv(self.token_env)
if not token:
get_logger().warning(
f"The 'token_env' parameter was specified as '{self.token_env}', "
f"however, no environment variable under such a name was found. "
f"Therefore, the loader will not use any tokens for authentication."
)
return token
return self.use_token
def _download_file_from_space(self, filename: str) -> str:
from huggingface_hub import hf_hub_download
from huggingface_hub.utils import EntryNotFoundError, RepositoryNotFoundError
token = self._get_token()
try:
file_path = hf_hub_download(
repo_id=self.space_name,
filename=filename,
repo_type="space",
token=token,
revision=self.revision,
local_dir=self.path,
)
except EntryNotFoundError as e:
raise ValueError(
f"The file '{filename}' was not found in the space '{self.space_name}'. "
f"Please check if the filename is correct, or if it exists in that "
f"Huggingface space."
) from e
except RepositoryNotFoundError as e:
raise ValueError(
f"The Huggingface space '{self.space_name}' was not found. "
f"Please check if the name is correct and you have access to the space."
) from e
return file_path
def _download_data(self) -> str:
if isinstance(self.data_files, str):
data_files = [self.data_files]
elif isinstance(self.data_files, Mapping):
data_files = list(self.data_files.values())
else:
data_files = self.data_files
dir_paths_list = []
for files in data_files:
if isinstance(files, str):
files = [files]
paths = [self._download_file_from_space(file) for file in files]
dir_paths = [
path.replace(file_url, "") for path, file_url in zip(paths, files)
]
dir_paths_list.extend(dir_paths)
# All files - within the same space - are downloaded into the same base directory:
assert len(set(dir_paths_list)) == 1
return f"{dir_paths_list.pop()}"
@staticmethod
def _is_wildcard(path: str) -> bool:
wildcard_characters = ["*", "?", "[", "]"]
return any(char in path for char in wildcard_characters)
def _get_file_list_from_wildcard_path(
self, pattern: str, repo_files: List
) -> List[str]:
if self._is_wildcard(pattern):
return fnmatch.filter(repo_files, pattern)
return [pattern]
def _map_wildcard_path_to_full_paths(self):
api = HfApi()
repo_files = api.list_repo_files(
self.space_name, repo_type="space", revision=self.revision
)
if isinstance(self.data_files, str):
self.data_files = self._get_file_list_from_wildcard_path(
self.data_files, repo_files
)
elif isinstance(self.data_files, Mapping):
new_mapping = {}
for k, v in self.data_files.items():
if isinstance(v, list):
assert all(isinstance(s, str) for s in v)
new_mapping[k] = [
file
for p in v
for file in self._get_file_list_from_wildcard_path(
p, repo_files
)
]
elif isinstance(v, str):
new_mapping[k] = self._get_file_list_from_wildcard_path(
v, repo_files
)
else:
raise NotImplementedError(
f"Loader does not support input 'data_files' of type Mapping[{type(v)}]"
)
self.data_files = new_mapping
elif isinstance(self.data_files, list):
assert all(isinstance(s, str) for s in self.data_files)
self.data_files = [
file
for p in self.data_files
for file in self._get_file_list_from_wildcard_path(p, repo_files)
]
else:
raise NotImplementedError(
f"Loader does not support input 'data_files' of type {type(self.data_files)}"
)
def load_data(self):
self.sef_default_data_classification(
["public"], "when loading from Huggingface spaces"
)
self._map_wildcard_path_to_full_paths()
self.path = self._download_data()
return super().load_data()