First commit
Browse files- README.md +7 -6
- app.py +92 -0
- document.png +0 -0
- requirements.txt +7 -0
- rsz_unstructured_logo.png +0 -0
README.md
CHANGED
@@ -1,13 +1,14 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
colorFrom: green
|
5 |
-
colorTo:
|
6 |
sdk: streamlit
|
7 |
-
sdk_version: 1.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
license:
|
|
|
11 |
---
|
12 |
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Ved Fine Tuned
|
3 |
+
emoji: 🦀
|
4 |
colorFrom: green
|
5 |
+
colorTo: blue
|
6 |
sdk: streamlit
|
7 |
+
sdk_version: 1.19.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: other
|
11 |
+
duplicated_from: unstructuredio/ved-pre-trained
|
12 |
---
|
13 |
|
14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
import streamlit as st
|
5 |
+
import os
|
6 |
+
|
7 |
+
from PIL import Image
|
8 |
+
from io import BytesIO
|
9 |
+
from transformers import VisionEncoderDecoderModel, VisionEncoderDecoderConfig, DonutProcessor, DonutImageProcessor, AutoTokenizer
|
10 |
+
|
11 |
+
def run_prediction(sample, model, processor):
|
12 |
+
|
13 |
+
pixel_values = processor(np.array(
|
14 |
+
sample,
|
15 |
+
np.float32,
|
16 |
+
), return_tensors="pt").pixel_values
|
17 |
+
|
18 |
+
with torch.no_grad():
|
19 |
+
outputs = model.generate(
|
20 |
+
pixel_values.to(device),
|
21 |
+
decoder_input_ids=processor.tokenizer("<s><s_plain>", add_special_tokens=False, return_tensors="pt").input_ids.to(device),
|
22 |
+
do_sample=True,
|
23 |
+
top_p=0.92,
|
24 |
+
top_k=5,
|
25 |
+
no_repeat_ngram_size=10,
|
26 |
+
num_beams=3
|
27 |
+
)
|
28 |
+
|
29 |
+
# process output
|
30 |
+
prediction = processor.batch_decode(outputs)[0]
|
31 |
+
print(prediction)
|
32 |
+
|
33 |
+
return prediction
|
34 |
+
|
35 |
+
|
36 |
+
logo = Image.open("./rsz_unstructured_logo.png")
|
37 |
+
st.image(logo)
|
38 |
+
|
39 |
+
st.markdown('''
|
40 |
+
### Chipper
|
41 |
+
Chipper is an OCR-free Document Understanding Transformer. It was pre-trained with over 1M documents from public sources and fine-tuned on a large range of documents.
|
42 |
+
|
43 |
+
At [Unstructured.io](https://github.com/Unstructured-IO/unstructured) we are on a mission to build custom preprocessing pipelines for labeling, training, or production ML-ready pipelines.
|
44 |
+
Come and join us in our public repos and contribute! Each of your contributions and feedback holds great value and is very significant to the community.
|
45 |
+
''')
|
46 |
+
|
47 |
+
image_upload = None
|
48 |
+
photo = None
|
49 |
+
with st.sidebar:
|
50 |
+
# file upload
|
51 |
+
uploaded_file = st.file_uploader("Upload a document")
|
52 |
+
if uploaded_file is not None:
|
53 |
+
# To read file as bytes:
|
54 |
+
image_bytes_data = uploaded_file.getvalue()
|
55 |
+
image_upload = Image.open(BytesIO(image_bytes_data))
|
56 |
+
|
57 |
+
if image_upload:
|
58 |
+
image = image_upload
|
59 |
+
else:
|
60 |
+
image = Image.open(f"./document.png")
|
61 |
+
|
62 |
+
st.image(image, caption='Your target document')
|
63 |
+
|
64 |
+
with st.spinner(f'Processing the document ...'):
|
65 |
+
pre_trained_model = "unstructuredio/chipper-fast-fine-tuning"
|
66 |
+
processor = DonutProcessor.from_pretrained(pre_trained_model)
|
67 |
+
model = VisionEncoderDecoderModel.from_pretrained(pre_trained_model)
|
68 |
+
|
69 |
+
from huggingface_hub import hf_hub_download
|
70 |
+
|
71 |
+
lm_head_file = hf_hub_download(
|
72 |
+
repo_id=pre_trained_model, filename="lm_head.pth"
|
73 |
+
)
|
74 |
+
|
75 |
+
rank = 128
|
76 |
+
model.decoder.lm_head = nn.Sequential(
|
77 |
+
nn.Linear(model.decoder.lm_head.weight.shape[1], rank, bias=False),
|
78 |
+
nn.Linear(rank, rank, bias=False),
|
79 |
+
nn.Linear(rank, model.decoder.lm_head.weight.shape[0], bias=True),
|
80 |
+
)
|
81 |
+
|
82 |
+
model.decoder.lm_head.load_state_dict(torch.load(lm_head_file))
|
83 |
+
|
84 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
85 |
+
|
86 |
+
model.eval()
|
87 |
+
model.to(device)
|
88 |
+
|
89 |
+
st.info(f'Parsing document')
|
90 |
+
parsed_info = run_prediction(image.convert("RGB"), model, processor)
|
91 |
+
st.text(f'\nDocument:')
|
92 |
+
st.text_area('Output text', value=parsed_info, height=800)
|
document.png
ADDED
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
altair<5
|
2 |
+
huggingface_hub
|
3 |
+
numpy
|
4 |
+
opencv-python
|
5 |
+
streamlit
|
6 |
+
torch==1.13.1
|
7 |
+
transformers
|
rsz_unstructured_logo.png
ADDED