Spaces:
Runtime error
Runtime error
File size: 2,039 Bytes
47c5fb9 16e3302 47c5fb9 ddb7a7a 47c5fb9 11b197a 47c5fb9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
import os
import sys
import base64
from io import BytesIO
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
import torch
from fastapi import FastAPI
import numpy as np
from PIL import Image
import clip
from dalle.models import Dalle
from dalle.utils.utils import clip_score, download
print("Loading models...")
app = FastAPI()
url = "https://arena.kakaocdn.net/brainrepo/models/minDALL-E/57b008f02ceaa02b779c8b7463143315/1.3B.tar.gz"
root = os.path.expanduser("~/.cache/minDALLE")
filename = os.path.basename(url)
pathname = filename[: -len(".tar.gz")]
download_target = os.path.join(root, filename)
result_path = os.path.join(root, pathname)
if not os.path.exists(result_path):
result_path = download(url, root)
device = "cuda" if torch.cuda.is_available() else "cpu"
model = Dalle.from_pretrained(result_path) # This will automatically download the pretrained model.
model.to(device=device)
model_clip, preprocess_clip = clip.load("ViT-B/32", device=device)
model_clip.to(device=device)
print("Models loaded !")
@app.get("/")
def read_root():
return {"minDALL-E!"}
@app.get("/{generate}")
def generate(prompt):
images = sample(prompt)
images = [to_base64(image) for image in images]
return {"images": images}
def sample(prompt):
# Sampling
images = (
model.sampling(prompt=prompt, top_k=256, top_p=None, softmax_temperature=1.0, num_candidates=9, device=device)
.cpu()
.numpy()
)
images = np.transpose(images, (0, 2, 3, 1))
# CLIP Re-ranking
rank = clip_score(
prompt=prompt, images=images, model_clip=model_clip, preprocess_clip=preprocess_clip, device=device
)
images = images[rank]
pil_images = []
for i in range(len(images)):
im = Image.fromarray((images[i] * 255).astype(np.uint8))
pil_images.append(im)
return pil_images
def to_base64(pil_image):
buffered = BytesIO()
pil_image.save(buffered, format="JPEG")
return base64.b64encode(buffered.getvalue()) |