minDALLE / examples /transfer_learning_ex.py
valhalla's picture
init
b442155
raw
history blame
7.2 kB
# ------------------------------------------------------------------------------------
# Minimal DALL-E
# Copyright (c) 2021 KakaoBrain. All Rights Reserved.
# Licensed under the Apache License, Version 2.0 [see LICENSE for details]
# ------------------------------------------------------------------------------------
import os
import sys
import argparse
from typing import Optional
from datetime import datetime
import torch
from torch.utils.data import DataLoader
import torchvision
import torchvision.transforms as transforms
import pytorch_lightning as pl
from pytorch_lightning.callbacks import ModelCheckpoint, Callback
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.utilities.distributed import rank_zero_only
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from dalle.models import ImageGPT
parser = argparse.ArgumentParser()
parser.add_argument('-d', '--config-downstream', type=str, default=None, required=True)
parser.add_argument('-u', '--path-upstream', type=str, default=None, required=True)
parser.add_argument('-r', '--result-path', type=str, default=None, required=True)
parser.add_argument('--imagenet-path', type=str, default=None, required=True)
parser.add_argument('--n-gpus', type=int, default=1)
parser.add_argument('--seed', type=int, default=0)
args = parser.parse_args()
class ImageLogger(Callback):
def __init__(self):
super().__init__()
@rank_zero_only
def log_img(self, pl_module, batch, current_epoch, split="train"):
with torch.no_grad():
images, labels = batch
recons = pl_module.stage1(images)
images = images.cpu()
recons = recons.cpu()
grid_org = (torchvision.utils.make_grid(images, nrow=8) + 1.0) / 2.0
grid_rec = (torchvision.utils.make_grid(recons, nrow=8) + 1.0) / 2.0
grid_rec = torch.clip(grid_rec, min=0, max=1)
pl_module.logger.experiment.add_image(f"images_org/{split}", grid_org, global_step=current_epoch)
pl_module.logger.experiment.add_image(f"images_rec/{split}", grid_rec, global_step=current_epoch)
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
if batch_idx == 0 and trainer.current_epoch < 5:
self.log_img(pl_module, batch, current_epoch=trainer.current_epoch, split="train")
def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
if batch_idx == 0 and trainer.current_epoch < 5:
self.log_img(pl_module, batch, current_epoch=trainer.current_epoch, split="test")
class ImageNetDataModule(pl.LightningDataModule):
def __init__(self,
data_dir: Optional[str] = None,
image_resolution: int = 256,
train_batch_size: int = 2,
valid_batch_size: int = 32,
num_workers: int = 8):
super().__init__()
self.data_dir = data_dir
self.image_resolution = image_resolution
self.train_batch_size = train_batch_size
self.valid_batch_size = valid_batch_size
self.num_workers = num_workers
self.train_transform = transforms.Compose(
[transforms.Resize(image_resolution),
transforms.RandomCrop(image_resolution),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]
)
self.valid_transform = transforms.Compose(
[transforms.Resize(image_resolution),
transforms.CenterCrop(image_resolution),
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]
)
def setup(self, stage=None):
self.trainset = torchvision.datasets.ImageNet(root=self.data_dir, split='train', transform=self.train_transform)
self.validset = torchvision.datasets.ImageNet(root=self.data_dir, split='val', transform=self.valid_transform)
def train_dataloader(self):
return DataLoader(self.trainset,
batch_size=self.train_batch_size,
num_workers=self.num_workers,
pin_memory=True)
def valid_dataloader(self):
return DataLoader(self.validset,
batch_size=self.valid_batch_size,
num_workers=self.num_workers,
pin_memory=True)
def setup_callbacks(config):
# Setup callbacks
now = datetime.now().strftime('%d%m%Y_%H%M%S')
result_path = os.path.join(args.result_path,
os.path.basename(args.config_downstream).split('.')[0],
now)
ckpt_path = os.path.join(result_path, 'ckpt')
log_path = os.path.join(result_path, 'log')
checkpoint_callback = ModelCheckpoint(
dirpath=ckpt_path,
filename="imagenet-clscond-gen-{epoch:02d}" if config.stage2.use_cls_cond else
"imagenet-uncond-gen-{epoch:02d}",
every_n_epochs=config.experiment.save_ckpt_freq,
save_weights_only=True,
save_last=True
)
logger = TensorBoardLogger(log_path, name="iGPT")
logger_img = ImageLogger()
return checkpoint_callback, logger, logger_img
if __name__ == '__main__':
pl.seed_everything(args.seed)
# Build iGPT
model, config = ImageGPT.from_pretrained(args.path_upstream, args.config_downstream)
# Setup callbacks
ckpt_callback, logger, logger_img = setup_callbacks(config)
# Build data modules
dataset = ImageNetDataModule(data_dir=args.imagenet_path,
image_resolution=config.dataset.image_resolution,
train_batch_size=config.experiment.local_batch_size,
valid_batch_size=config.experiment.valid_batch_size,
num_workers=16)
dataset.setup()
train_dataloader = dataset.train_dataloader()
valid_dataloader = dataset.valid_dataloader()
print(f"len(train_dataset) = {len(dataset.trainset)}")
print(f"len(valid_dataset) = {len(dataset.validset)}")
# Calculate how many batches are accumulated
assert config.experiment.total_batch_size % (config.experiment.local_batch_size * args.n_gpus) == 0
grad_accm_steps = config.experiment.total_batch_size // (config.experiment.local_batch_size * args.n_gpus)
config.optimizer.max_steps = len(dataset.trainset) // config.experiment.total_batch_size * config.experiment.epochs
# Build trainer
trainer = pl.Trainer(max_epochs=config.experiment.epochs,
accumulate_grad_batches=grad_accm_steps,
gradient_clip_val=config.optimizer.grad_clip_norm,
precision=16 if config.experiment.use_amp else 32,
callbacks=[ckpt_callback, logger_img],
accelerator="gpu",
devices=args.n_gpus,
strategy="ddp",
logger=logger)
trainer.fit(model, train_dataloader, valid_dataloader)