Spaces:
Runtime error
Runtime error
# ------------------------------------------------------------------------------------ | |
# Minimal DALL-E | |
# Copyright (c) 2021 KakaoBrain. All Rights Reserved. | |
# Licensed under the Apache License, Version 2.0 [see LICENSE for details] | |
# ------------------------------------------------------------------------------------ | |
import os | |
import sys | |
import argparse | |
from typing import Optional | |
from datetime import datetime | |
import torch | |
from torch.utils.data import DataLoader | |
import torchvision | |
import torchvision.transforms as transforms | |
import pytorch_lightning as pl | |
from pytorch_lightning.callbacks import ModelCheckpoint, Callback | |
from pytorch_lightning.loggers import TensorBoardLogger | |
from pytorch_lightning.utilities.distributed import rank_zero_only | |
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) | |
from dalle.models import ImageGPT | |
parser = argparse.ArgumentParser() | |
parser.add_argument('-d', '--config-downstream', type=str, default=None, required=True) | |
parser.add_argument('-u', '--path-upstream', type=str, default=None, required=True) | |
parser.add_argument('-r', '--result-path', type=str, default=None, required=True) | |
parser.add_argument('--imagenet-path', type=str, default=None, required=True) | |
parser.add_argument('--n-gpus', type=int, default=1) | |
parser.add_argument('--seed', type=int, default=0) | |
args = parser.parse_args() | |
class ImageLogger(Callback): | |
def __init__(self): | |
super().__init__() | |
def log_img(self, pl_module, batch, current_epoch, split="train"): | |
with torch.no_grad(): | |
images, labels = batch | |
recons = pl_module.stage1(images) | |
images = images.cpu() | |
recons = recons.cpu() | |
grid_org = (torchvision.utils.make_grid(images, nrow=8) + 1.0) / 2.0 | |
grid_rec = (torchvision.utils.make_grid(recons, nrow=8) + 1.0) / 2.0 | |
grid_rec = torch.clip(grid_rec, min=0, max=1) | |
pl_module.logger.experiment.add_image(f"images_org/{split}", grid_org, global_step=current_epoch) | |
pl_module.logger.experiment.add_image(f"images_rec/{split}", grid_rec, global_step=current_epoch) | |
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): | |
if batch_idx == 0 and trainer.current_epoch < 5: | |
self.log_img(pl_module, batch, current_epoch=trainer.current_epoch, split="train") | |
def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx): | |
if batch_idx == 0 and trainer.current_epoch < 5: | |
self.log_img(pl_module, batch, current_epoch=trainer.current_epoch, split="test") | |
class ImageNetDataModule(pl.LightningDataModule): | |
def __init__(self, | |
data_dir: Optional[str] = None, | |
image_resolution: int = 256, | |
train_batch_size: int = 2, | |
valid_batch_size: int = 32, | |
num_workers: int = 8): | |
super().__init__() | |
self.data_dir = data_dir | |
self.image_resolution = image_resolution | |
self.train_batch_size = train_batch_size | |
self.valid_batch_size = valid_batch_size | |
self.num_workers = num_workers | |
self.train_transform = transforms.Compose( | |
[transforms.Resize(image_resolution), | |
transforms.RandomCrop(image_resolution), | |
transforms.ToTensor(), | |
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])] | |
) | |
self.valid_transform = transforms.Compose( | |
[transforms.Resize(image_resolution), | |
transforms.CenterCrop(image_resolution), | |
transforms.ToTensor(), | |
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])] | |
) | |
def setup(self, stage=None): | |
self.trainset = torchvision.datasets.ImageNet(root=self.data_dir, split='train', transform=self.train_transform) | |
self.validset = torchvision.datasets.ImageNet(root=self.data_dir, split='val', transform=self.valid_transform) | |
def train_dataloader(self): | |
return DataLoader(self.trainset, | |
batch_size=self.train_batch_size, | |
num_workers=self.num_workers, | |
pin_memory=True) | |
def valid_dataloader(self): | |
return DataLoader(self.validset, | |
batch_size=self.valid_batch_size, | |
num_workers=self.num_workers, | |
pin_memory=True) | |
def setup_callbacks(config): | |
# Setup callbacks | |
now = datetime.now().strftime('%d%m%Y_%H%M%S') | |
result_path = os.path.join(args.result_path, | |
os.path.basename(args.config_downstream).split('.')[0], | |
now) | |
ckpt_path = os.path.join(result_path, 'ckpt') | |
log_path = os.path.join(result_path, 'log') | |
checkpoint_callback = ModelCheckpoint( | |
dirpath=ckpt_path, | |
filename="imagenet-clscond-gen-{epoch:02d}" if config.stage2.use_cls_cond else | |
"imagenet-uncond-gen-{epoch:02d}", | |
every_n_epochs=config.experiment.save_ckpt_freq, | |
save_weights_only=True, | |
save_last=True | |
) | |
logger = TensorBoardLogger(log_path, name="iGPT") | |
logger_img = ImageLogger() | |
return checkpoint_callback, logger, logger_img | |
if __name__ == '__main__': | |
pl.seed_everything(args.seed) | |
# Build iGPT | |
model, config = ImageGPT.from_pretrained(args.path_upstream, args.config_downstream) | |
# Setup callbacks | |
ckpt_callback, logger, logger_img = setup_callbacks(config) | |
# Build data modules | |
dataset = ImageNetDataModule(data_dir=args.imagenet_path, | |
image_resolution=config.dataset.image_resolution, | |
train_batch_size=config.experiment.local_batch_size, | |
valid_batch_size=config.experiment.valid_batch_size, | |
num_workers=16) | |
dataset.setup() | |
train_dataloader = dataset.train_dataloader() | |
valid_dataloader = dataset.valid_dataloader() | |
print(f"len(train_dataset) = {len(dataset.trainset)}") | |
print(f"len(valid_dataset) = {len(dataset.validset)}") | |
# Calculate how many batches are accumulated | |
assert config.experiment.total_batch_size % (config.experiment.local_batch_size * args.n_gpus) == 0 | |
grad_accm_steps = config.experiment.total_batch_size // (config.experiment.local_batch_size * args.n_gpus) | |
config.optimizer.max_steps = len(dataset.trainset) // config.experiment.total_batch_size * config.experiment.epochs | |
# Build trainer | |
trainer = pl.Trainer(max_epochs=config.experiment.epochs, | |
accumulate_grad_batches=grad_accm_steps, | |
gradient_clip_val=config.optimizer.grad_clip_norm, | |
precision=16 if config.experiment.use_amp else 32, | |
callbacks=[ckpt_callback, logger_img], | |
accelerator="gpu", | |
devices=args.n_gpus, | |
strategy="ddp", | |
logger=logger) | |
trainer.fit(model, train_dataloader, valid_dataloader) | |