File size: 3,038 Bytes
58b9de9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import unittest
from unittest.mock import patch

import pandas as pd

import src.backend.evaluate_model as evaluate_model


class TestSummaryGenerator(unittest.TestCase):

    def setUp(self):
        self.model_id = "test_model"
        self.revision = "test_revision"

    @patch("src.backend.model_operations.AutoTokenizer")
    @patch("src.backend.model_operations.AutoModelForCausalLM")
    def test_init(self, mock_model, mock_tokenizer):
        evaluate_model.SummaryGenerator(self.model_id, self.revision)
        mock_tokenizer.from_pretrained.assert_called_once_with(self.model_id,
                                                            self.revision)
        mock_model.from_pretrained.assert_called_once_with(self.model_id,
                                                        self.revision)

    @patch("src.backend.model_operations.nlp")
    @patch("src.backend.model_operations.AutoTokenizer")
    @patch("src.backend.model_operations.AutoModelForCausalLM")
    def test_generate_summaries(self, mock_model, mock_tokenizer, mock_nlp):
        df = pd.DataFrame({'text': ['text1', 'text2'],
                        'dataset': ['dataset1', 'dataset2']})

        generator = evaluate_model.SummaryGenerator(self.model_id, self.revision)
        generator.generate_summaries(df)

        self.assertEqual(len(generator.summaries_df), len(df))

    @patch("src.backend.model_operations.AutoTokenizer")
    @patch("src.backend.model_operations.AutoModelForCausalLM")
    def test_compute_avg_length(self, mock_model, mock_tokenizer):
        generator = evaluate_model.SummaryGenerator(self.model_id, self.revision)
        test_df = pd.DataFrame({'source': ['text'], 'summary': ['This is a test.'],
                                'dataset': ['dataset']})
        generator.summaries_df = test_df
        generator._compute_avg_length()
        self.assertEqual(generator.avg_length, 4)

    @patch("src.backend.model_operations.AutoTokenizer")
    @patch("src.backend.model_operations.AutoModelForCausalLM")
    def test_compute_answer_rate(self, mock_model, mock_tokenizer):
        generator = evaluate_model.SummaryGenerator(self.model_id, self.revision)
        test_df = pd.DataFrame({'source': ['text'], 'summary': ['This is a test.'],
                                'dataset': ['dataset']})
        generator.summaries_df = test_df
        generator._compute_answer_rate()
        self.assertEqual(generator.answer_rate, 1)

    @patch("src.backend.model_operations.AutoTokenizer")
    @patch("src.backend.model_operations.AutoModelForCausalLM")
    def test_error_rate(self, mock_model, mock_tokenizer):
        generator = evaluate_model.SummaryGenerator(self.model_id, self.revision)
        test_df = pd.DataFrame({'source': ['text'], 'summary': ['This is a test.'],
                                'dataset': ['dataset']})
        generator.summaries_df = test_df
        generator._compute_error_rate(0)
        self.assertEqual(generator.error_rate, 0)


if __name__ == "__main__":
    unittest.main()