File size: 3,802 Bytes
df66f6e
 
2a5f9fb
 
58b9de9
 
 
 
2a5f9fb
976f398
 
2a5f9fb
 
 
 
 
 
 
 
 
976f398
 
 
58b9de9
976f398
9d22eee
 
 
 
 
976f398
2a5f9fb
 
 
 
58b9de9
2a5f9fb
 
 
 
 
 
 
58b9de9
2a5f9fb
58b9de9
2a5f9fb
 
58b9de9
2a5f9fb
58b9de9
2a5f9fb
 
 
58b9de9
2a5f9fb
58b9de9
2a5f9fb
58b9de9
2a5f9fb
 
 
 
 
58b9de9
2a5f9fb
58b9de9
2a5f9fb
58b9de9
2a5f9fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
976f398
 
58b9de9
976f398
2a5f9fb
d7b7dc6
58b9de9
2a5f9fb
9833cdb
2a5f9fb
 
 
 
 
58b9de9
2a5f9fb
 
58b9de9
2a5f9fb
 
 
 
 
 
 
58b9de9
2a5f9fb
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import json
import os
from datetime import datetime, timezone

import src.display.formatting as formatting
import src.envs as envs
import src.submission.check_validity as check_validity


REQUESTED_MODELS = None
USERS_TO_SUBMISSION_DATES = None

def add_new_eval(
    model: str,
    base_model: str,
    revision: str,
    precision: str,
    weight_type: str,
    model_type: str,
):
    global REQUESTED_MODELS
    global USERS_TO_SUBMISSION_DATES
    if not REQUESTED_MODELS:
        REQUESTED_MODELS, USERS_TO_SUBMISSION_DATES = check_validity.already_submitted_models(envs.EVAL_REQUESTS_PATH)

    user_name = ""
    model_path = model
    if "/" in model:
        user_name = model.split("/")[0]
        model_path = model.split("/")[1]

    precision = precision.split(" ")[0]
    current_time = datetime.now(timezone.utc).strftime("%Y-%m-%dT%H:%M:%SZ")

    if model_type is None or model_type == "":
        return formatting.styled_error("Please select a model type.")

    # Does the model actually exist?
    if revision == "":
        revision = "main"

    # Is the model on the hub?
    if weight_type in ["Delta", "Adapter"]:
        base_model_on_hub, error, _ = check_validity.is_model_on_hub(model_name=base_model, revision=revision, token=envs.TOKEN, test_tokenizer=True)
        if not base_model_on_hub:
            return formatting.styled_error(f'Base model "{base_model}" {error}')

    if not weight_type == "Adapter":
        model_on_hub, error, _ = check_validity.is_model_on_hub(model_name=model, revision=revision, test_tokenizer=True)
        if not model_on_hub:
            return formatting.styled_error(f'Model "{model}" {error}')

    # Is the model info correctly filled?
    try:
        model_info = envs.API.model_info(repo_id=model, revision=revision)
    except Exception:
        return formatting.styled_error("Could not get your model information. Please fill it up properly.")

    model_size = check_validity.get_model_size(model_info=model_info, precision=precision)

    # Were the model card and license filled?
    try:
        license = model_info.cardData["license"]
    except Exception:
        return formatting.styled_error("Please select a license for your model")

    modelcard_OK, error_msg = check_validity.check_model_card(model)
    if not modelcard_OK:
        return formatting.styled_error(error_msg)

    # Seems good, creating the eval
    print("Adding new eval")

    eval_entry = {
        "model": model,
        "base_model": base_model,
        "revision": revision,
        "precision": precision,
        "weight_type": weight_type,
        "status": "PENDING",
        "submitted_time": current_time,
        "model_type": model_type,
        "likes": model_info.likes,
        "params": model_size,
        "license": license,
    }

    # Check for duplicate submission
    if f"{model}_{revision}_{precision}" in REQUESTED_MODELS:
        return formatting.styled_warning("This model has been already submitted.")

    print("Creating eval file")

    OUT_DIR = f"{envs.EVAL_REQUESTS_PATH}/{user_name}"
    os.makedirs(OUT_DIR, exist_ok=True)
    out_path = f"{OUT_DIR}/{model_path}_eval_request_False_{precision}_{weight_type}.json"

    with open(out_path, "w") as f:
        f.write(json.dumps(eval_entry))

    print("Uploading eval file")
    envs.API.upload_file(
        path_or_fileobj=out_path,
        path_in_repo=out_path.split("eval-queue/")[1],
        repo_id=envs.QUEUE_REPO,
        repo_type="dataset",
        commit_message=f"Add {model} to eval queue",
    )

    # Remove the local file
    os.remove(out_path)

    return formatting.styled_message(
        "Your request has been submitted to the evaluation queue!\nPlease wait for up to an hour for the model to show in the PENDING list."
    )