File size: 4,127 Bytes
2a5f9fb
df66f6e
2a5f9fb
df66f6e
 
6e56e0d
df66f6e
099e4e2
7302987
6e56e0d
 
9833cdb
6e56e0d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7302987
6e56e0d
3dfaf22
7302987
099e4e2
 
 
7302987
 
099e4e2
7302987
 
099e4e2
 
3dfaf22
6e56e0d
 
 
 
 
3dfaf22
6e56e0d
 
7302987
3b66490
 
6e56e0d
 
2a5f9fb
9833cdb
2a5f9fb
 
9833cdb
 
2a5f9fb
 
 
 
 
fc1e99b
9833cdb
fc1e99b
2a5f9fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import json
import os
from collections import defaultdict

import huggingface_hub
from huggingface_hub import ModelCard
from huggingface_hub.hf_api import ModelInfo
from transformers import AutoConfig, AutoTokenizer
from transformers.models.auto.tokenization_auto import tokenizer_class_from_name, get_tokenizer_config

def check_model_card(repo_id: str) -> tuple[bool, str]:
    """Checks if the model card and license exist and have been filled"""
    try:
        card = ModelCard.load(repo_id)
    except huggingface_hub.utils.EntryNotFoundError:
        return False, "Please add a model card to your model to explain how you trained/fine-tuned it."

    # Enforce license metadata
    if card.data.license is None:
        if not ("license_name" in card.data and "license_link" in card.data):
            return False, (
                "License not found. Please add a license to your model card using the `license` metadata or a"
                " `license_name`/`license_link` pair."
            )

    # Enforce card content
    if len(card.text) < 200:
        return False, "Please add a description to your model card, it is too short."

    return True, ""


def is_model_on_hub(model_name: str, revision: str, token: str = None, trust_remote_code=False, test_tokenizer=False) -> tuple[bool, str]:
    try:
        config = AutoConfig.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
        if test_tokenizer:
            try:
                tk = AutoTokenizer.from_pretrained(model_name, revision=revision, trust_remote_code=trust_remote_code, token=token)
            except ValueError as e:
                return (
                    False,
                    f"uses a tokenizer which is not in a transformers release: {e}",
                    None
                )
            except Exception as e:
                return (False, "'s tokenizer cannot be loaded. Is your tokenizer class in a stable transformers release, and correctly configured?", None)
        return True, None, config

    except ValueError:
        return (
            False,
            "needs to be launched with `trust_remote_code=True`. For safety reason, we do not allow these models to be automatically submitted to the leaderboard.",
            None
        )

    except Exception as e:
        return False, f"was not found on hub!: {e}", None



def get_model_size(model_info: ModelInfo, precision: str):
    """Gets the model size from the configuration, or the model name if the configuration does not contain the information."""
    try:
        model_size = round(model_info.safetensors["total"] / 1e9, 3)
    except (AttributeError, TypeError):
        return 0  # Unknown model sizes are indicated as 0, see NUMERIC_INTERVALS in app.py

    size_factor = 8 if (precision == "GPTQ" or "gptq" in model_info.modelId.lower()) else 1
    model_size = size_factor * model_size
    return model_size

def get_model_arch(model_info: ModelInfo):
    """Gets the model architecture from the configuration"""
    return model_info.config.get("architectures", "Unknown")

def already_submitted_models(requested_models_dir: str) -> set[str]:
    depth = 1
    file_names = []
    users_to_submission_dates = defaultdict(list)

    for root, _, files in os.walk(requested_models_dir):
        current_depth = root.count(os.sep) - requested_models_dir.count(os.sep)
        if current_depth == depth:
            for file in files:
                if not file.endswith(".json"):
                    continue
                with open(os.path.join(root, file), "r") as f:
                    info = json.load(f)
                    file_names.append(f"{info['model']}_{info['revision']}_{info['precision']}")

                    # Select organisation
                    if info["model"].count("/") == 0 or "submitted_time" not in info:
                        continue
                    organisation, _ = info["model"].split("/")
                    users_to_submission_dates[organisation].append(info["submitted_time"])

    return set(file_names), users_to_submission_dates