leaderboard / src /backend /model_operations.py
Miaoran000's picture
minor update and extend to support different APIs
150bb15
raw
history blame
15.1 kB
import os
import time
from datetime import datetime
import logging
from pathlib import Path
import requests
import json
import numpy as np
import pandas as pd
import spacy
from sentence_transformers import CrossEncoder
import litellm
# from litellm import completion
from tqdm import tqdm
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, AutoConfig
# from accelerate import PartialState
# from accelerate.inference import prepare_pippy
import torch
import cohere
from openai import OpenAI
import src.backend.util as util
import src.envs as envs
litellm.set_verbose=False
# Set up basic configuration for logging
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s')
# Load spacy model for word tokenization
nlp = spacy.load("en_core_web_sm")
os.environ["HUGGINGFACE_API_KEY"] = envs.TOKEN
def load_evaluation_model(model_path):
"""Load the evaluation model from the given path
Args:
model_path (str): Path to the evaluation model
Returns:
CrossEncoder: The evaluation model
"""
model = CrossEncoder(model_path)
return model
class ModelLoadingException(Exception):
"""Exception raised for errors in loading a model.
Attributes:
model_id (str): The model identifier.
revision (str): The model revision.
"""
def __init__(self, model_id, revision, messages="Error initializing model"):
self.model_id = model_id
self.revision = revision
super().__init__(f"{messages} id={model_id} revision={revision}")
class SummaryGenerator:
"""A class to generate summaries using a causal language model.
Attributes:
model (str): huggingface/{model_id}
api_base (str): https://api-inference.huggingface.co/models/{model_id}
summaries_df (DataFrame): DataFrame to store generated summaries.
revision (str): Model revision.
avg_length (float): Average length of summaries.
answer_rate (float): Rate of non-empty summaries.
"""
def __init__(self, model_id, revision):
"""
Initializes the SummaryGenerator with a model.
Args:
model_id (str): Identifier for the model.
revision (str): Revision of the model.
"""
self.model_id = model_id
self.model = f"huggingface/{model_id}"
self.api_base = f"https://api-inference.huggingface.co/models/{model_id}"
self.summaries_df = pd.DataFrame()
self.revision = revision
self.avg_length = None
self.answer_rate = None
self.exceptions = None
self.local_model = None
def generate_summaries(self, df, save_path=None):
"""Generate summaries for a given DataFrame of source docs.
Args:
df (DataFrame): DataFrame containing source docs.
Returns:
summaries_df (DataFrame): Generated summaries by the model.
"""
exceptions = []
if (save_path is not None) and os.path.exists(save_path):
self.summaries_df = pd.read_csv(save_path)
print(f'Loaded generated summaries from {save_path}')
else:
source, summary, dataset = [], [], []
print(f"Total: {df.shape[0]}")
for index, row in tqdm(df.iterrows(), total=df.shape[0]):
_source = row['text']
_dataset = row['dataset']
system_prompt = envs.SYSTEM_PROMPT
user_prompt = f"{envs.USER_PROMPT}\nPassage:\n{_source}"
while True:
try:
_summary = self.generate_summary(system_prompt, user_prompt)
# print(f"Finish index {index}")
break
except Exception as e:
if 'Rate limit reached' in str(e):
wait_time = 3660
current_time = datetime.now().strftime('%H:%M:%S')
print(f"Rate limit hit at {current_time}. Waiting for 1 hour before retrying...")
time.sleep(wait_time)
elif 'is currently loading' in str(e):
wait_time = 200
print(f"Model is loading, wait for {wait_time}")
time.sleep(wait_time)
else:
print(f"Error at index {index}: {e}")
_summary = ""
exceptions.append(index)
break
summary.append(_summary)
source.append(_source)
dataset.append(_dataset)
# Sleep to prevent hitting rate limits too frequently
time.sleep(1)
self.summaries_df = pd.DataFrame(list(zip(source, summary, dataset)),
columns=["source", "summary", "dataset"])
if save_path is not None:
print(f'Save summaries to {save_path}')
fpath = Path(save_path)
fpath.parent.mkdir(parents=True, exist_ok=True)
self.summaries_df.to_csv(fpath)
self.exceptions = exceptions
self._compute_avg_length()
self._compute_answer_rate()
return self.summaries_df
def generate_summary(self, system_prompt: str, user_prompt: str):
# Using Together AI API
if 'mixtral' in self.model_id.lower() or 'dbrx' in self.model_id.lower() or 'wizardlm' in self.model_id.lower(): # For mixtral and dbrx models, use Together AI API
suffix = "completions" if ('mixtral' in self.model_id.lower() or 'base' in self.model_id.lower()) else "chat/completions"
url = f"https://api.together.xyz/v1/{suffix}"
payload = {
"model": self.model_id,
# "max_tokens": 4096,
'max_new_tokens': 250,
"temperature": 0.0,
'repetition_penalty': 1.1 if 'mixtral' in self.model_id.lower() else 1
}
if 'mixtral' in self.model_id.lower():
# payload['prompt'] = user_prompt
# payload['prompt'] = "Write a summary of the following passage:\nPassage:\n" + user_prompt.split('Passage:\n')[-1] + '\n\nSummary:'
payload['prompt'] = 'You must stick to the passage provided. Provide a concise summary of the following passage, covering the core pieces of information described:\nPassage:\n' + user_prompt.split('Passage:\n')[-1] + '\n\nSummary:'
print(payload)
else:
payload['messages'] = [{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}]
headers = {
"accept": "application/json",
"content-type": "application/json",
"Authorization": f"Bearer {os.environ['TOGETHER_API_KEY']}"
}
response = requests.post(url, json=payload, headers=headers)
try:
result = json.loads(response.text)
# print(result)
result = result["choices"][0]
if 'message' in result:
result = result["message"]["content"].strip()
else:
result = result["text"]
result_candidates = [result_cancdidate for result_cancdidate in result.split('\n\n') if len(result_cancdidate) > 0]
result = result_candidates[0]
print(result)
except:
print(response)
result = ''
return result
# Using OpenAI API
elif 'gpt' in self.model_id.lower():
response = litellm.completion(
model=self.model_id.replace('openai/',''),
messages=[{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}],
temperature=0.0,
max_tokens=250,
)
result = response['choices'][0]['message']['content']
print(result)
return result
# Using HF API or download checkpoints
if self.local_model is None:
try: # try use HuggingFace API
response = litellm.completion(
model='command-r-plus' if 'command' in self.model else self.model,
messages=[{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt}],
temperature=0.0,
max_tokens=1024,
api_base=self.api_base,
)
result = response['choices'][0]['message']['content']
except: # fail to call api. run it locally.
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id, trust_remote_code=True)
print("Tokenizer loaded")
self.local_model = AutoModelForCausalLM.from_pretrained(self.model_id, trust_remote_code=True, device_map="auto", torch_dtype="auto")
print("Local model loaded")
# Using local model
if self.local_model: # cannot call API. using local model
messages=[
{"role": "system", "content": system_prompt}, # gemma-1.1 does not accept system role
{"role": "user", "content": user_prompt}
],
prompt = self.tokenizer.apply_chat_template(messages,add_generation_prompt=True, tokenize=False)
print(prompt)
input_ids = self.tokenizer(prompt, return_tensors="pt").to('cuda')
with torch.no_grad():
outputs = self.local_model.generate(**input_ids, max_new_tokens=250, do_sample=True, temperature=0.01, pad_token_id=self.tokenizer.eos_token_id)
result = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
result = result.replace(prompt[0], '')
print(result)
return result
def _compute_avg_length(self):
"""
Compute the average length of non-empty summaries using SpaCy.
"""
total_word_count = 0
total_count = 0
for summary in self.summaries_df['summary']:
if util.is_summary_valid(summary):
doc = nlp(summary)
words = [token.text for token in doc if token.is_alpha]
total_word_count += len(words)
total_count += 1
self.avg_length = 0 if total_count == 0 else total_word_count / total_count
def _compute_answer_rate(self):
"""
Compute the rate of non-empty summaries.
"""
valid_count = sum(1 for summary in self.summaries_df['summary']
if util.is_summary_valid(summary))
total_count = len(self.summaries_df)
self.answer_rate = 0 if total_count == 0 else valid_count / total_count
class EvaluationModel:
"""A class to evaluate generated summaries.
Attributes:
model (CrossEncoder): The evaluation model.
scores (list): List of evaluation scores.
accuracy (float): Accuracy of the summaries.
hallucination_rate (float): Rate of hallucination in summaries.
"""
def __init__(self, model_path):
"""
Initializes the EvaluationModel with a CrossEncoder model.
Args:
model_path (str): Path to the CrossEncoder model.
"""
self.model = load_evaluation_model(model_path)
self.scores = []
self.factual_consistency_rate = None
self.hallucination_rate = None
def evaluate_hallucination(self, summaries_df):
"""
Evaluate the hallucination rate in summaries. Updates the 'scores' attribute
of the instance with the computed scores.
Args:
summaries_df (DataFrame): DataFrame containing source docs and summaries.
Returns:
list: List of hallucination scores. Also updates the 'scores' attribute of the instance.
"""
hem_scores = []
sources = []
summaries = []
source_summary_pairs = util.create_pairs(summaries_df)
for doc, summary in tqdm(source_summary_pairs, desc="Evaluating hallucinations"):
if util.is_summary_valid(summary):
try:
# summary_pieces = summary.split('\n')
# summary = summary_pieces[0] if len(summary_pieces[0].strip()) > 0 else summary_pieces[1]
summary = summary.replace('<bos>','').replace('<eos>','')
# print([doc, summary])
# print(self.model.predict([doc, summary]))
score = self.model.predict([doc, summary])# [0]
if not isinstance(score, float):
try:
score = score.item()
except:
logging.warning(f"Score type mismatch: Expected float, got {type(score)}.")
continue
hem_scores.append(score)
sources.append(doc)
summaries.append(summary)
except Exception as e:
logging.error(f"Error while running HEM: {e}")
raise
self.scores = hem_scores
eval_results = {'source': sources, 'summary': summaries, 'HEM scores': hem_scores}
return hem_scores, eval_results
def compute_factual_consistency_rate(self, threshold=0.5):
"""
Compute the factual consistency rate of the evaluated summaries based on
the previously calculated scores. This method relies on the 'scores'
attribute being populated, typically via the 'evaluate_hallucination' method.
Returns:
float: Factual Consistency Rate. Also updates the 'factual_consistency_rate'
and 'hallucination_rate' attributes of the instance.
Raises:
ValueError: If scores have not been calculated prior to calling this method.
"""
if not self.scores:
error_msg = "Scores not calculated. Call evaluate_hallucination() first."
logging.error(error_msg)
raise ValueError(error_msg)
# Use threshold of 0.5 to compute factual_consistency_rate
num_above_threshold = sum(score >= threshold for score in self.scores)
num_total = len(self.scores)
if not num_total:
raise ValueError("No scores available to compute factual consistency rate.")
self.factual_consistency_rate = (num_above_threshold / num_total) * 100
self.hallucination_rate = 100 - self.factual_consistency_rate
return self.factual_consistency_rate