Miaoran000's picture
minor update and extend to support different APIs
150bb15
raw
history blame
2.43 kB
def is_summary_valid(summary: str) -> bool:
"""
Checks if the summary is valid.
A summary is valid if it is not empty and contains at least five words.
Args:
summary (str): The summary to check.
Returns:
bool: True if the summary is valid, False otherwise.
"""
if isinstance(summary, str):
words = summary.split()
if len(words) >= 5:
return True
# print(summary)
return False
def create_pairs(df):
"""
Creates pairs of source and summary from the dataframe.
Args:
df (DataFrame): The dataframe containing source and summary columns.
Returns:
list: A list of pairs [source, summary].
"""
pairs = []
for _, row in df.iterrows():
pairs.append([row['source'], row['summary']])
return pairs
def format_results(model_name: str, revision: str, precision: str,
factual_consistency_rate: float, hallucination_rate: float,
answer_rate: float, avg_summary_len: float) -> dict:
"""
Formats the evaluation results into a structured dictionary.
Args:
model_name (str): The name of the evaluated model.
revision (str): The revision hash of the model.
precision (str): The precision with which the evaluation was run.
factual_consistency_rate (float): The factual consistency rate.
hallucination_rate (float): The hallucination rate.
answer_rate (float): The answer rate.
avg_summary_len (float): The average summary length.
Returns:
dict: A dictionary containing the structured evaluation results.
"""
results = {
"config": {
"model_dtype": precision, # Precision with which you ran the evaluation
"model_name": model_name, # Name of the model
"model_sha": revision # Hash of the model
},
"results": {
"hallucination_rate": {
"hallucination_rate": round(hallucination_rate,1)
},
"factual_consistency_rate": {
"factual_consistency_rate": round(factual_consistency_rate,1)
},
"answer_rate": {
"answer_rate": round(answer_rate*100,1)
},
"average_summary_length": {
"average_summary_length": round(avg_summary_len,1)
},
}
}
return results