Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Minseok Bae
commited on
Commit
•
2864204
1
Parent(s):
404587d
Implemented litellm pipeline
Browse files- requirements.txt +1 -0
- src/backend/model_operations.py +54 -37
- src/display/about.py +4 -4
- src/envs.py +3 -0
requirements.txt
CHANGED
@@ -5,6 +5,7 @@ datasets==2.14.5
|
|
5 |
gradio==4.4.0
|
6 |
gradio_client==0.7.0
|
7 |
huggingface-hub>=0.18.0
|
|
|
8 |
matplotlib==3.7.1
|
9 |
numpy==1.24.2
|
10 |
pandas==2.0.0
|
|
|
5 |
gradio==4.4.0
|
6 |
gradio_client==0.7.0
|
7 |
huggingface-hub>=0.18.0
|
8 |
+
litellm==1.15.1
|
9 |
matplotlib==3.7.1
|
10 |
numpy==1.24.2
|
11 |
pandas==2.0.0
|
src/backend/model_operations.py
CHANGED
@@ -1,12 +1,17 @@
|
|
|
|
|
|
|
|
1 |
import logging
|
2 |
|
3 |
import numpy as np
|
4 |
import pandas as pd
|
5 |
import spacy
|
6 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
7 |
from sentence_transformers import CrossEncoder
|
|
|
8 |
|
9 |
import src.backend.util as util
|
|
|
10 |
|
11 |
# Set up basic configuration for logging
|
12 |
logging.basicConfig(level=logging.INFO,
|
@@ -15,6 +20,8 @@ logging.basicConfig(level=logging.INFO,
|
|
15 |
# Load spacy model for word tokenization
|
16 |
nlp = spacy.load("en_core_web_sm")
|
17 |
|
|
|
|
|
18 |
|
19 |
def load_evaluation_model(model_path):
|
20 |
"""Load the evaluation model from the given path
|
@@ -29,6 +36,18 @@ def load_evaluation_model(model_path):
|
|
29 |
return model
|
30 |
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
class ModelLoadingException(Exception):
|
33 |
"""Exception raised for errors in loading a model.
|
34 |
|
@@ -42,12 +61,13 @@ class ModelLoadingException(Exception):
|
|
42 |
self.revision = revision
|
43 |
super().__init__(f"{messages} id={model_id} revision={revision}")
|
44 |
|
|
|
45 |
class SummaryGenerator:
|
46 |
"""A class to generate summaries using a causal language model.
|
47 |
|
48 |
Attributes:
|
49 |
-
|
50 |
-
|
51 |
summaries_df (DataFrame): DataFrame to store generated summaries.
|
52 |
revision (str): Model revision.
|
53 |
avg_length (float): Average length of summaries.
|
@@ -62,17 +82,13 @@ class SummaryGenerator:
|
|
62 |
model_id (str): Identifier for the model.
|
63 |
revision (str): Revision of the model.
|
64 |
"""
|
65 |
-
|
66 |
-
|
67 |
-
self.model = AutoModelForCausalLM.from_pretrained(model_id, revision)
|
68 |
-
except Exception as e:
|
69 |
-
logging.error(f"Error initializing model with id {model_id} and revision {revision}: {e}")
|
70 |
-
raise ModelLoadingException(model_id, revision) from e
|
71 |
self.summaries_df = pd.DataFrame()
|
72 |
self.revision = revision
|
73 |
self.avg_length = None
|
74 |
self.answer_rate = None
|
75 |
-
self.
|
76 |
|
77 |
def generate_summaries(self, df):
|
78 |
"""Generate summaries for a given DataFrame of source docs.
|
@@ -84,34 +100,43 @@ class SummaryGenerator:
|
|
84 |
summaries_df (DataFrame): Generated summaries by the model.
|
85 |
"""
|
86 |
source, summary, dataset = [], [], []
|
|
|
87 |
|
88 |
-
error_count = 0
|
89 |
for index, row in df.iterrows():
|
90 |
_source = row['text']
|
91 |
_dataset = row['dataset']
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
|
110 |
self.summaries_df = pd.DataFrame(list(zip(source, summary, dataset)),
|
111 |
columns=["source", "summary", "dataset"])
|
|
|
112 |
self._compute_avg_length()
|
113 |
self._compute_answer_rate()
|
114 |
-
# self._compute_error_rate(error_count)
|
115 |
|
116 |
return self.summaries_df
|
117 |
|
@@ -140,14 +165,6 @@ class SummaryGenerator:
|
|
140 |
|
141 |
self.answer_rate = 0 if total_rows == 0 else non_empty_count / total_rows
|
142 |
|
143 |
-
# def _compute_error_rate(self, count):
|
144 |
-
# """
|
145 |
-
# Compute the error rate of summaries.
|
146 |
-
# """
|
147 |
-
# total_rows = len(self.summaries_df)
|
148 |
-
|
149 |
-
# self.error_rate = 0 if total_rows == 0 else count / total_rows
|
150 |
-
|
151 |
|
152 |
class EvaluationModel:
|
153 |
"""A class to evaluate generated summaries.
|
|
|
1 |
+
import os
|
2 |
+
import time
|
3 |
+
from datetime import datetime
|
4 |
import logging
|
5 |
|
6 |
import numpy as np
|
7 |
import pandas as pd
|
8 |
import spacy
|
9 |
+
# from transformers import AutoModelForCausalLM, AutoTokenizer
|
10 |
from sentence_transformers import CrossEncoder
|
11 |
+
from litellm import completion
|
12 |
|
13 |
import src.backend.util as util
|
14 |
+
import src.envs as envs
|
15 |
|
16 |
# Set up basic configuration for logging
|
17 |
logging.basicConfig(level=logging.INFO,
|
|
|
20 |
# Load spacy model for word tokenization
|
21 |
nlp = spacy.load("en_core_web_sm")
|
22 |
|
23 |
+
os.environ["HUGGINGFACE_API_KEY"] = envs.TOKEN
|
24 |
+
|
25 |
|
26 |
def load_evaluation_model(model_path):
|
27 |
"""Load the evaluation model from the given path
|
|
|
36 |
return model
|
37 |
|
38 |
|
39 |
+
def generate_summary(model: str, system_prompt: str, user_prompt: str, api_base: str):
|
40 |
+
response = completion(
|
41 |
+
model=model,
|
42 |
+
messages=[{"role": "system", "content": system_prompt},
|
43 |
+
{"role": "user", "content": user_prompt}],
|
44 |
+
temperature=0.0,
|
45 |
+
max_tokens=1024,
|
46 |
+
api_base=api_base,
|
47 |
+
)
|
48 |
+
return response['choices'][0]['message']['content']
|
49 |
+
|
50 |
+
|
51 |
class ModelLoadingException(Exception):
|
52 |
"""Exception raised for errors in loading a model.
|
53 |
|
|
|
61 |
self.revision = revision
|
62 |
super().__init__(f"{messages} id={model_id} revision={revision}")
|
63 |
|
64 |
+
|
65 |
class SummaryGenerator:
|
66 |
"""A class to generate summaries using a causal language model.
|
67 |
|
68 |
Attributes:
|
69 |
+
model (str): huggingface/{model_id}
|
70 |
+
api_base (str): https://api-inference.huggingface.co/models/{model_id}
|
71 |
summaries_df (DataFrame): DataFrame to store generated summaries.
|
72 |
revision (str): Model revision.
|
73 |
avg_length (float): Average length of summaries.
|
|
|
82 |
model_id (str): Identifier for the model.
|
83 |
revision (str): Revision of the model.
|
84 |
"""
|
85 |
+
self.model = f"huggingface/{model_id}"
|
86 |
+
self.api_base = f"https://api-inference.huggingface.co/models/{model_id}"
|
|
|
|
|
|
|
|
|
87 |
self.summaries_df = pd.DataFrame()
|
88 |
self.revision = revision
|
89 |
self.avg_length = None
|
90 |
self.answer_rate = None
|
91 |
+
self.exceptions = None
|
92 |
|
93 |
def generate_summaries(self, df):
|
94 |
"""Generate summaries for a given DataFrame of source docs.
|
|
|
100 |
summaries_df (DataFrame): Generated summaries by the model.
|
101 |
"""
|
102 |
source, summary, dataset = [], [], []
|
103 |
+
exceptions = []
|
104 |
|
|
|
105 |
for index, row in df.iterrows():
|
106 |
_source = row['text']
|
107 |
_dataset = row['dataset']
|
108 |
+
|
109 |
+
system_prompt = envs.SYSTEM_PROMPT
|
110 |
+
user_prompt = f"{envs.USER_PROMPT}\nPassage:\n{_source}"
|
111 |
+
|
112 |
+
while True:
|
113 |
+
try:
|
114 |
+
_summary = generate_summary(self.model, system_prompt,
|
115 |
+
user_prompt, self.api_base)
|
116 |
+
break
|
117 |
+
except Exception as e:
|
118 |
+
if 'Rate limit reached' in str(e):
|
119 |
+
wait_time = 3660
|
120 |
+
current_time = datetime.now().strftime('%H:%M:%S')
|
121 |
+
print(f"Rate limit hit at {current_time}. Waiting for 1 hour before retrying...")
|
122 |
+
time.sleep(wait_time)
|
123 |
+
else:
|
124 |
+
print(f"Error at index {index}: {e}")
|
125 |
+
_summary = ""
|
126 |
+
exceptions.append(index)
|
127 |
+
break
|
128 |
+
|
129 |
+
summary.append(_summary)
|
130 |
+
source.append(_source)
|
131 |
+
dataset.append(_dataset)
|
132 |
+
|
133 |
+
time.sleep(1)
|
134 |
|
135 |
self.summaries_df = pd.DataFrame(list(zip(source, summary, dataset)),
|
136 |
columns=["source", "summary", "dataset"])
|
137 |
+
self.exceptions = exceptions
|
138 |
self._compute_avg_length()
|
139 |
self._compute_answer_rate()
|
|
|
140 |
|
141 |
return self.summaries_df
|
142 |
|
|
|
165 |
|
166 |
self.answer_rate = 0 if total_rows == 0 else non_empty_count / total_rows
|
167 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
|
169 |
class EvaluationModel:
|
170 |
"""A class to evaluate generated summaries.
|
src/display/about.py
CHANGED
@@ -43,10 +43,10 @@ Our evaluation dataset is composed of 1006 documents from multiple public datase
|
|
43 |
We generate summaries for each of these documents using submitted LLMs and compute hallucination scores for each pair of document and generated summary. (Check the prompt we used [here](https://huggingface.co/spaces/vectara/Hallucination-evaluation-leaderboard))
|
44 |
|
45 |
## Understand each metric
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
|
51 |
## Reproducibility
|
52 |
To reproduce our results, here is the commands you can run:
|
|
|
43 |
We generate summaries for each of these documents using submitted LLMs and compute hallucination scores for each pair of document and generated summary. (Check the prompt we used [here](https://huggingface.co/spaces/vectara/Hallucination-evaluation-leaderboard))
|
44 |
|
45 |
## Understand each metric
|
46 |
+
- Hallucination Rate: The percentage of summaries that have a hallucination score below 0.5
|
47 |
+
- Factual Consistency Rate: (1 - Hallucination Rate) * 100 (%)
|
48 |
+
- Answer Rate: The percentage of summaries that are non-empty. (This is a proxy for whether the model generates a summary at all)
|
49 |
+
- Average Summary Length: The average number of words in the generated summaries
|
50 |
|
51 |
## Reproducibility
|
52 |
To reproduce our results, here is the commands you can run:
|
src/envs.py
CHANGED
@@ -24,3 +24,6 @@ API = HfApi(token=TOKEN)
|
|
24 |
SOURCE_PATH = "src/datasets/leaderboard_dataset.csv"
|
25 |
SAMPLE_DATASET_PATH = "src/datasets/sample_dataset.csv"
|
26 |
HEM_PATH = 'vectara/hallucination_evaluation_model'
|
|
|
|
|
|
|
|
24 |
SOURCE_PATH = "src/datasets/leaderboard_dataset.csv"
|
25 |
SAMPLE_DATASET_PATH = "src/datasets/sample_dataset.csv"
|
26 |
HEM_PATH = 'vectara/hallucination_evaluation_model'
|
27 |
+
|
28 |
+
SYSTEM_PROMPT = "You are a chat bot answering questions using data. You must stick to the answers provided solely by the text in the passage provided."
|
29 |
+
USER_PROMPT = "You are asked the question 'Provide a concise summary of the following passage, covering the core pieces of information described': "
|