import os import torch from huggingface_hub import HfApi # replace this with our token TOKEN = os.environ.get("HF_TOKEN", None) OWNER = "vectara" REPO_ID = f"{OWNER}/leaderboard" QUEUE_REPO = f"{OWNER}/requests" RESULTS_REPO = f"{OWNER}/results" LEADERBOARD_DATASET_REPO = f"{OWNER}/leaderboard_results" CACHE_PATH=os.getenv("HF_HOME", ".") # Local caches EVAL_REQUESTS_PATH = os.path.join(CACHE_PATH, "eval-queue") EVAL_RESULTS_PATH = os.path.join(CACHE_PATH, "eval-results") EVAL_REQUESTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-queue-bk") EVAL_RESULTS_PATH_BACKEND = os.path.join(CACHE_PATH, "eval-results-bk") DEVICE = torch.device('cuda' if torch.cuda.is_available() else 'cpu') #"cpu" API = HfApi(token=TOKEN) LEADERBOARD_DATASET_PATH = "Hallucination Leaderboard Results/leaderboard_summaries.csv" DATASET_PATH = "src/datasets/leaderboard_dataset.csv" SAMPLE_DATASET_PATH = "src/datasets/sample_dataset.csv" HEM_PATH = 'vectara/hallucination_evaluation_model' SYSTEM_PROMPT = "You are a chat bot answering questions using data. You must stick to the answers provided solely by the text in the passage provided." USER_PROMPT = "You are asked the question 'Provide a concise summary of the following passage, covering the core pieces of information described': "