|
from scipy import optimize |
|
from utils import get_monthly_sip_nav_df |
|
|
|
|
|
def calculate_xnpv(rate, cashflows): |
|
chron_order = sorted(cashflows, key=lambda x: x[0]) |
|
t0 = chron_order[0][0] |
|
return sum([cf/(1+rate)**((t-t0).days/365.0) for (t,cf) in chron_order]) |
|
|
|
def calculate_xirr(cashflows, guess=0.1): |
|
return optimize.newton(lambda r: calculate_xnpv(r,cashflows), guess) |
|
|
|
def get_investment_xirr(investment_df, start_date, end_date, SIP_date, lumpsum_amount, sip_amount): |
|
|
|
if(sip_amount == 0): |
|
sip_amount = 1000 |
|
|
|
monthly_nav_df = get_monthly_sip_nav_df(investment_df, start_date, end_date, SIP_date) |
|
|
|
|
|
cash_flows = [] |
|
dates = [] |
|
|
|
|
|
cash_flows.append(-lumpsum_amount) |
|
dates.append(start_date) |
|
|
|
|
|
initial_units = lumpsum_amount / monthly_nav_df['nav'].iloc[0] |
|
total_units = initial_units |
|
|
|
|
|
for _, row in monthly_nav_df.iterrows(): |
|
cash_flows.append(-sip_amount) |
|
dates.append(row['date']) |
|
total_units += sip_amount / row['nav'] |
|
|
|
|
|
final_value = total_units * monthly_nav_df['nav'].iloc[-1] |
|
cash_flows.append(final_value) |
|
dates.append(monthly_nav_df['date'].iloc[-1]) |
|
|
|
portfolio_XIRR = calculate_xirr(list(zip(dates, cash_flows))) |
|
|
|
return portfolio_XIRR * 100 |
|
|
|
def get_investment_sip_absolute_returns(investment_df, sip_amount, lumpsum_amount, stepup, start_date, end_date, SIP_Date): |
|
|
|
|
|
|
|
scheme_df_monthly = get_monthly_sip_nav_df(investment_df, start_date, end_date, SIP_Date) |
|
|
|
total_investment = lumpsum_amount |
|
current_sip_amount = sip_amount |
|
|
|
|
|
units_bought = lumpsum_amount / scheme_df_monthly.iloc[0]['nav'] |
|
units_accumulated = units_bought |
|
previous_year = start_date.year |
|
|
|
for _, row in scheme_df_monthly.iloc[:-1].iterrows(): |
|
|
|
if row['date'].year > previous_year: |
|
current_sip_amount += current_sip_amount * (stepup / 100) |
|
previous_year = row['date'].year |
|
|
|
units_bought = current_sip_amount / row['nav'] |
|
units_accumulated += units_bought |
|
total_investment += current_sip_amount |
|
|
|
final_value = units_accumulated * scheme_df_monthly.iloc[-1]['nav'] |
|
total_return = (final_value - total_investment) / total_investment * 100 |
|
|
|
return total_return, final_value, total_investment |