File size: 7,488 Bytes
74e4bcd 1945055 74e4bcd 1945055 74e4bcd 1945055 74e4bcd 1945055 74e4bcd 1945055 74e4bcd 1945055 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 |
import os
import urllib.request
from collections import OrderedDict
from html import escape
import pandas as pd
import numpy as np
import torch
import torchvision.transforms as transforms
from transformers import CLIPProcessor, CLIPModel
import tokenizers
import regex
import streamlit as st
import models
from tokenizer import SimpleTokenizer
cuda_available = torch.cuda.is_available()
model_url = "https://dl.fbaipublicfiles.com/slip/slip_large_100ep.pt"
model_filename = "slip_large_100ep.pt"
def get_model(model):
if isinstance(model, torch.nn.DataParallel) or isinstance(
model, torch.nn.parallel.DistributedDataParallel
):
return model.module
else:
return model
@st.cache(
show_spinner=False,
hash_funcs={
CLIPModel: lambda _: None,
CLIPProcessor: lambda _: None,
dict: lambda _: None,
},
)
def load():
# Load SLIP model from Facebook AI Research
if model_filename not in os.listdir():
urllib.request.urlretrieve(model_url, model_filename)
ckpt = torch.load("slip_large_100ep.pt", map_location="cpu")
state_dict = OrderedDict()
for k, v in ckpt["state_dict"].items():
state_dict[k.replace("module.", "")] = v
old_args = ckpt["args"]
slip_model = getattr(models, "SLIP_VITL16")(
rand_embed=False,
ssl_mlp_dim=old_args.ssl_mlp_dim,
ssl_emb_dim=old_args.ssl_emb_dim,
)
if cuda_available:
slip_model.cuda()
slip_model.load_state_dict(state_dict, strict=True)
slip_model = get_model(slip_model)
tokenizer = SimpleTokenizer()
del ckpt
del state_dict
# Load CLIP model from HuggingFace
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
# Load images' descriptions and embeddings
df = {0: pd.read_csv("data.csv"), 1: pd.read_csv("data2.csv")}
embeddings = {0: np.load("embeddings.npy"), 1: np.load("embeddings2.npy")}
slip_embeddings = {
0: np.load("embeddings_slip_large.npy"),
1: np.load("embeddings2_slip_large.npy"),
}
for k in [0, 1]:
embeddings[k] = np.divide(
embeddings[k], np.sqrt(np.sum(embeddings[k] ** 2, axis=1, keepdims=True))
)
return model, processor, slip_model, tokenizer, df, embeddings, slip_embeddings
model, processor, slip_model, tokenizer, df, embeddings, slip_embeddings = load()
source = {0: "\nSource: Unsplash", 1: "\nSource: The Movie Database (TMDB)"}
def get_html(url_list, url_list_slip, height=150):
html = (
"<div style='display: flex; flex-wrap: wrap; justify-content: space-evenly;'>"
)
html += "<span style='margin-top: 20px; max-width: 1200px; display: flex; align-content: flex-start; flex-wrap: wrap; justify-content: space-evenly; width: 50%'>"
html += "<div style='width: 100%; text-align: center;'><b>CLIP</b> (<a href='https://arxiv.org/abs/2103.00020'>Arxiv</a>, <a href='https://github.com/openai/CLIP'>GitHub</a>) from OpenAI</div>"
for url, title, link in url_list:
html2 = f"<img title='{escape(title)}' style='height: {height}px; margin: 5px' src='{escape(url)}'>"
if len(link) > 0:
html2 = f"<a href='{escape(link)}' target='_blank'>" + html2 + "</a>"
html = html + html2
html += "</span>"
html += "<span style='margin-top: 20px; max-width: 1200px; display: flex; align-content: flex-start; flex-wrap: wrap; justify-content: space-evenly; width: 50%; border-left: solid; border-color: #ffc423; border-width: thin;'>"
html += "<div style='width: 100%; text-align: center;'><b>SLIP</b> (<a href='https://arxiv.org/abs/2112.12750'>Arxiv</a>, <a href='https://github.com/facebookresearch/SLIP'>GitHub</a>) from Meta AI</div>"
for url, title, link in url_list_slip:
html2 = f"<img title='{escape(title)}' style='height: {height}px; margin: 5px' src='{escape(url)}'>"
if len(link) > 0:
html2 = f"<a href='{escape(link)}' target='_blank'>" + html2 + "</a>"
html = html + html2
html += "</span></div>"
return html
def compute_text_embeddings(list_of_strings):
inputs = processor(text=list_of_strings, return_tensors="pt", padding=True)
return model.get_text_features(**inputs)
def compute_text_embeddings_slip(list_of_strings):
texts = tokenizer(list_of_strings)
if cuda_available:
texts = texts.cuda(non_blocking=True)
texts = texts.view(-1, 77).contiguous()
return slip_model.encode_text(texts)
def image_search(query, corpus, n_results=24):
text_embeddings = compute_text_embeddings([query]).detach().numpy()
text_embeddings_slip = compute_text_embeddings_slip([query]).detach().numpy()
k = 0 if corpus == "Unsplash" else 1
results = np.argsort((embeddings[k] @ text_embeddings.T)[:, 0])[
-1 : -n_results - 1 : -1
]
results_slip = np.argsort((slip_embeddings[k] @ text_embeddings_slip.T)[:, 0])[
-1 : -n_results - 1 : -1
]
return (
[
(
df[k].iloc[i]["path"],
df[k].iloc[i]["tooltip"] + source[k],
df[k].iloc[i]["link"],
)
for i in results
],
[
(
df[k].iloc[i]["path"],
df[k].iloc[i]["tooltip"] + source[k],
df[k].iloc[i]["link"],
)
for i in results_slip
],
)
description = """
# Comparing CLIP and SLIP side by side
**Enter your query and hit enter**
CLIP and SLIP are ML models that encode images and texts as vectors so that the vectors of an image and its caption are similar. They can notably be used for zero-shot image classification, text-based image retrieval or image generation.
Cf. this Twitter [thread](https://twitter.com/vivien000000/status/1475829936443334660) with some suprising differences between CLIP and SLIP.
*Built with OpenAI's [CLIP](https://openai.com/blog/clip/) model, Meta AI's [SLIP](https://github.com/facebookresearch/SLIP) model, 🤗 Hugging Face's [transformers library](https://huggingface.co/transformers/), [Streamlit](https://streamlit.io/), 25k images from [Unsplash](https://unsplash.com/) and 8k images from [The Movie Database (TMDB)](https://www.themoviedb.org/)*
"""
st.markdown(
"""
<style>
.block-container{
max-width: 1200px;
}
div.row-widget.stRadio > div{
flex-direction:row;
display: flex;
justify-content: center;
}
div.row-widget.stRadio > div > label{
margin-left: 5px;
margin-right: 5px;
}
section.main>div:first-child {
padding-top: 0px;
}
section:not(.main)>div:first-child {
padding-top: 30px;
}
div.reportview-container > section:first-child{
max-width: 320px;
}
#MainMenu {
visibility: hidden;
}
footer {
visibility: hidden;
}
</style>""",
unsafe_allow_html=True,
)
st.sidebar.markdown(description)
_, c, _ = st.columns((1, 3, 1))
query = c.text_input("", value="clouds at sunset")
corpus = st.radio("", ["Unsplash", "Movies"])
if len(query) > 0:
results, results_slip = image_search(query, corpus)
st.markdown(get_html(results, results_slip), unsafe_allow_html=True)
|