|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from collections import OrderedDict |
|
|
|
import numpy as np |
|
import timm |
|
import torch |
|
from torch import nn |
|
|
|
import losses |
|
|
|
|
|
class LayerNorm(nn.LayerNorm): |
|
"""Subclass torch's LayerNorm to handle fp16.""" |
|
|
|
def forward(self, x: torch.Tensor): |
|
orig_type = x.dtype |
|
ret = super().forward(x.type(torch.float32)) |
|
return ret.type(orig_type) |
|
|
|
|
|
class QuickGELU(nn.Module): |
|
def forward(self, x: torch.Tensor): |
|
return x * torch.sigmoid(1.702 * x) |
|
|
|
|
|
class ResidualAttentionBlock(nn.Module): |
|
def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): |
|
super().__init__() |
|
|
|
self.attn = nn.MultiheadAttention(d_model, n_head) |
|
self.ln_1 = LayerNorm(d_model) |
|
self.mlp = nn.Sequential(OrderedDict([ |
|
("c_fc", nn.Linear(d_model, d_model * 4)), |
|
("gelu", QuickGELU()), |
|
("c_proj", nn.Linear(d_model * 4, d_model)) |
|
])) |
|
self.ln_2 = LayerNorm(d_model) |
|
self.attn_mask = attn_mask |
|
|
|
def attention(self, x: torch.Tensor): |
|
self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None |
|
return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] |
|
|
|
def forward(self, x: torch.Tensor): |
|
x = x + self.attention(self.ln_1(x)) |
|
x = x + self.mlp(self.ln_2(x)) |
|
return x |
|
|
|
|
|
class Transformer(nn.Module): |
|
def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None): |
|
super().__init__() |
|
self.width = width |
|
self.layers = layers |
|
self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)]) |
|
|
|
def forward(self, x: torch.Tensor): |
|
return self.resblocks(x) |
|
|
|
|
|
class CLIP(nn.Module): |
|
def __init__(self, |
|
embed_dim: int, |
|
|
|
vision_width: int, |
|
vision_model: nn.Module, |
|
|
|
context_length: int, |
|
vocab_size: int, |
|
transformer_width: int, |
|
transformer_heads: int, |
|
transformer_layers: int, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
|
|
self.context_length = context_length |
|
self.vision_width = vision_width |
|
|
|
self.visual = vision_model |
|
|
|
self.transformer = Transformer( |
|
width=transformer_width, |
|
layers=transformer_layers, |
|
heads=transformer_heads, |
|
attn_mask=self.build_attention_mask(), |
|
) |
|
|
|
self.vocab_size = vocab_size |
|
self.token_embedding = nn.Embedding(vocab_size, transformer_width) |
|
self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width)) |
|
self.ln_final = LayerNorm(transformer_width) |
|
|
|
self.image_projection = nn.Parameter(torch.empty(vision_width, embed_dim)) |
|
self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim)) |
|
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) |
|
|
|
self.initialize_parameters() |
|
|
|
def initialize_parameters(self): |
|
nn.init.normal_(self.token_embedding.weight, std=0.02) |
|
nn.init.normal_(self.positional_embedding, std=0.01) |
|
|
|
proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) |
|
attn_std = self.transformer.width ** -0.5 |
|
fc_std = (2 * self.transformer.width) ** -0.5 |
|
for block in self.transformer.resblocks: |
|
nn.init.normal_(block.attn.in_proj_weight, std=attn_std) |
|
nn.init.normal_(block.attn.out_proj.weight, std=proj_std) |
|
nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) |
|
nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) |
|
|
|
nn.init.normal_(self.image_projection, std=self.vision_width ** -0.5) |
|
nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5) |
|
|
|
def build_attention_mask(self): |
|
|
|
|
|
mask = torch.empty(self.context_length, self.context_length) |
|
mask.fill_(float("-inf")) |
|
mask.triu_(1) |
|
return mask |
|
|
|
def encode_image(self, image): |
|
x = self.visual(image) |
|
x = x @ self.image_projection |
|
|
|
return x |
|
|
|
def encode_text(self, text): |
|
x = self.token_embedding(text) |
|
x = x + self.positional_embedding |
|
x = x.permute(1, 0, 2) |
|
x = self.transformer(x) |
|
x = x.permute(1, 0, 2) |
|
x = self.ln_final(x) |
|
|
|
|
|
|
|
x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection |
|
|
|
return x |
|
|
|
def forward(self, image, text): |
|
image_embed = self.encode_image(image) |
|
text_embed = self.encode_text(text) |
|
|
|
return {'image_embed': image_embed, |
|
'text_embed': text_embed, |
|
'logit_scale': self.logit_scale.exp()} |
|
|
|
|
|
class SIMCLR(nn.Module): |
|
def __init__(self, |
|
|
|
vision_width: int, |
|
vision_model: nn.Module, |
|
|
|
ssl_mlp_dim: int, |
|
ssl_emb_dim: int, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
|
|
self.vision_width = vision_width |
|
self.visual = vision_model |
|
|
|
self.image_mlp = self._build_mlp(in_dim=vision_width, mlp_dim=ssl_mlp_dim, out_dim=ssl_emb_dim) |
|
|
|
def _build_mlp(self, in_dim, mlp_dim, out_dim): |
|
return nn.Sequential(OrderedDict([ |
|
("layer1", nn.Linear(in_dim, mlp_dim)), |
|
("bn1", nn.SyncBatchNorm(mlp_dim)), |
|
("relu1", nn.ReLU(inplace=True)), |
|
("layer2", nn.Linear(mlp_dim, mlp_dim)), |
|
("bn2", nn.SyncBatchNorm(mlp_dim)), |
|
("relu2", nn.ReLU(inplace=True)), |
|
("layer3", nn.Linear(mlp_dim, out_dim)), |
|
])) |
|
|
|
def encode_image(self, image): |
|
x = self.visual(image) |
|
|
|
return x |
|
|
|
def forward(self, aug1, aug2): |
|
h1 = self.visual(aug1) |
|
h2 = self.visual(aug2) |
|
|
|
aug1_embed = self.image_mlp(h1) |
|
aug2_embed = self.image_mlp(h2) |
|
|
|
return {'aug1_embed': aug1_embed, |
|
'aug2_embed': aug2_embed} |
|
|
|
|
|
class SLIP(CLIP): |
|
def __init__(self, |
|
ssl_mlp_dim: int, |
|
ssl_emb_dim: int, |
|
**kwargs, |
|
): |
|
super().__init__(**kwargs) |
|
|
|
self.image_mlp = self._build_mlp(in_dim=self.vision_width, mlp_dim=ssl_mlp_dim, out_dim=ssl_emb_dim) |
|
|
|
def _build_mlp(self, in_dim, mlp_dim, out_dim): |
|
return nn.Sequential(OrderedDict([ |
|
("layer1", nn.Linear(in_dim, mlp_dim)), |
|
("bn1", nn.SyncBatchNorm(mlp_dim)), |
|
("relu1", nn.ReLU(inplace=True)), |
|
("layer2", nn.Linear(mlp_dim, mlp_dim)), |
|
("bn2", nn.SyncBatchNorm(mlp_dim)), |
|
("relu2", nn.ReLU(inplace=True)), |
|
("layer3", nn.Linear(mlp_dim, out_dim)), |
|
])) |
|
|
|
def forward(self, image, text, aug1, aug2): |
|
aug1_embed = self.image_mlp(self.visual(aug1)) |
|
aug2_embed = self.image_mlp(self.visual(aug2)) |
|
|
|
image_embed = self.encode_image(image) |
|
text_embed = self.encode_text(text) |
|
|
|
return {'image_embed': image_embed, |
|
'text_embed': text_embed, |
|
'logit_scale': self.logit_scale.exp(), |
|
'aug1_embed': aug1_embed, |
|
'aug2_embed': aug2_embed} |
|
|
|
|
|
def get_loss(model, ssl_temp, ssl_scale): |
|
if model.startswith('SLIP'): |
|
ssl_loss = losses.SIMCLRLoss(temperature=ssl_temp) |
|
return losses.SLIPLoss(ssl_loss, ssl_scale) |
|
if model.startswith('CLIP'): |
|
return losses.CLIPLoss() |
|
if model.startswith('SIMCLR'): |
|
return losses.SIMCLRLoss(temperature=ssl_temp) |
|
|
|
|
|
def get_metric_names(model): |
|
if model.startswith('SLIP'): |
|
return ['loss', 'clip_loss', 'ssl_loss', 'clip_acc', 'ssl_acc'] |
|
elif model.startswith('CLIP'): |
|
return ['loss', 'clip_loss', 'clip_acc'] |
|
else: |
|
return ['loss', 'ssl_loss', 'ssl_acc'] |
|
|
|
|
|
@timm.models.registry.register_model |
|
def vit_small_mocov3_patch16_224(**kwargs): |
|
model_kwargs = dict(patch_size=16, embed_dim=384, depth=12, num_heads=12, **kwargs) |
|
model = timm.models.vision_transformer._create_vision_transformer('vit_small_patch16_224', **model_kwargs) |
|
|
|
return model |
|
|
|
|
|
def CLIP_VITS16(**kwargs): |
|
vision_model = timm.create_model('vit_small_mocov3_patch16_224', num_classes=0) |
|
model = CLIP(embed_dim=512, vision_width=384, vision_model=vision_model, context_length=77, vocab_size=49408, |
|
transformer_width=512, transformer_heads=8, transformer_layers=12, **kwargs) |
|
|
|
return model |
|
|
|
|
|
def SIMCLR_VITS16(**kwargs): |
|
vision_model = timm.create_model('vit_small_mocov3_patch16_224', num_classes=0) |
|
model = SIMCLR(vision_width=384, vision_model=vision_model, **kwargs) |
|
|
|
return model |
|
|
|
|
|
def SLIP_VITS16(**kwargs): |
|
vision_model = timm.create_model('vit_small_mocov3_patch16_224', num_classes=0) |
|
model = SLIP(embed_dim=512, vision_width=384, vision_model=vision_model, context_length=77, vocab_size=49408, |
|
transformer_width=512, transformer_heads=8, transformer_layers=12, **kwargs) |
|
|
|
return model |
|
|
|
|
|
def CLIP_VITB16(**kwargs): |
|
vision_model = timm.create_model('vit_base_patch16_224', num_classes=0) |
|
model = CLIP(embed_dim=512, vision_width=768, vision_model=vision_model, context_length=77, vocab_size=49408, |
|
transformer_width=512, transformer_heads=8, transformer_layers=12, **kwargs) |
|
|
|
return model |
|
|
|
|
|
def SIMCLR_VITB16(**kwargs): |
|
vision_model = timm.create_model('vit_base_patch16_224', num_classes=0) |
|
model = SIMCLR(vision_width=768, vision_model=vision_model, **kwargs) |
|
|
|
return model |
|
|
|
|
|
def SLIP_VITB16(**kwargs): |
|
vision_model = timm.create_model('vit_base_patch16_224', num_classes=0) |
|
model = SLIP(embed_dim=512, vision_width=768, vision_model=vision_model, context_length=77, vocab_size=49408, |
|
transformer_width=512, transformer_heads=8, transformer_layers=12, **kwargs) |
|
|
|
return model |
|
|
|
|
|
def CLIP_VITL16(**kwargs): |
|
vision_model = timm.create_model('vit_large_patch16_224', num_classes=0) |
|
model = CLIP(embed_dim=512, vision_width=1024, vision_model=vision_model, context_length=77, vocab_size=49408, |
|
transformer_width=512, transformer_heads=8, transformer_layers=12, **kwargs) |
|
|
|
return model |
|
|
|
|
|
def SIMCLR_VITL16(**kwargs): |
|
vision_model = timm.create_model('vit_large_patch16_224', num_classes=0) |
|
model = SIMCLR(vision_width=1024, vision_model=vision_model, **kwargs) |
|
|
|
return model |
|
|
|
|
|
def SLIP_VITL16(**kwargs): |
|
vision_model = timm.create_model('vit_large_patch16_224', num_classes=0) |
|
model = SLIP(embed_dim=512, vision_width=1024, vision_model=vision_model, context_length=77, vocab_size=49408, |
|
transformer_width=512, transformer_heads=8, transformer_layers=12, **kwargs) |
|
|
|
return model |
|
|