Spaces:
Runtime error
Runtime error
import type { ModelData } from "./model-data"; | |
const TAG_CUSTOM_CODE = "custom_code"; | |
function nameWithoutNamespace(modelId: string): string { | |
const splitted = modelId.split("/"); | |
return splitted.length === 1 ? splitted[0] : splitted[1]; | |
} | |
//#region snippets | |
export const adapters = (model: ModelData): string[] => [ | |
`from adapters import AutoAdapterModel | |
model = AutoAdapterModel.from_pretrained("${model.config?.adapter_transformers?.model_name}") | |
model.load_adapter("${model.id}", set_active=True)`, | |
]; | |
const allennlpUnknown = (model: ModelData) => [ | |
`import allennlp_models | |
from allennlp.predictors.predictor import Predictor | |
predictor = Predictor.from_path("hf://${model.id}")`, | |
]; | |
const allennlpQuestionAnswering = (model: ModelData) => [ | |
`import allennlp_models | |
from allennlp.predictors.predictor import Predictor | |
predictor = Predictor.from_path("hf://${model.id}") | |
predictor_input = {"passage": "My name is Wolfgang and I live in Berlin", "question": "Where do I live?"} | |
predictions = predictor.predict_json(predictor_input)`, | |
]; | |
export const allennlp = (model: ModelData): string[] => { | |
if (model.tags?.includes("question-answering")) { | |
return allennlpQuestionAnswering(model); | |
} | |
return allennlpUnknown(model); | |
}; | |
export const asteroid = (model: ModelData): string[] => [ | |
`from asteroid.models import BaseModel | |
model = BaseModel.from_pretrained("${model.id}")`, | |
]; | |
function get_base_diffusers_model(model: ModelData): string { | |
return model.cardData?.base_model?.toString() ?? "fill-in-base-model"; | |
} | |
export const bertopic = (model: ModelData): string[] => [ | |
`from bertopic import BERTopic | |
model = BERTopic.load("${model.id}")`, | |
]; | |
const diffusers_default = (model: ModelData) => [ | |
`from diffusers import DiffusionPipeline | |
pipeline = DiffusionPipeline.from_pretrained("${model.id}")`, | |
]; | |
const diffusers_controlnet = (model: ModelData) => [ | |
`from diffusers import ControlNetModel, StableDiffusionControlNetPipeline | |
controlnet = ControlNetModel.from_pretrained("${model.id}") | |
pipeline = StableDiffusionControlNetPipeline.from_pretrained( | |
"${get_base_diffusers_model(model)}", controlnet=controlnet | |
)`, | |
]; | |
const diffusers_lora = (model: ModelData) => [ | |
`from diffusers import DiffusionPipeline | |
pipeline = DiffusionPipeline.from_pretrained("${get_base_diffusers_model(model)}") | |
pipeline.load_lora_weights("${model.id}")`, | |
]; | |
const diffusers_textual_inversion = (model: ModelData) => [ | |
`from diffusers import DiffusionPipeline | |
pipeline = DiffusionPipeline.from_pretrained("${get_base_diffusers_model(model)}") | |
pipeline.load_textual_inversion("${model.id}")`, | |
]; | |
export const diffusers = (model: ModelData): string[] => { | |
if (model.tags?.includes("controlnet")) { | |
return diffusers_controlnet(model); | |
} else if (model.tags?.includes("lora")) { | |
return diffusers_lora(model); | |
} else if (model.tags?.includes("textual_inversion")) { | |
return diffusers_textual_inversion(model); | |
} else { | |
return diffusers_default(model); | |
} | |
}; | |
export const espnetTTS = (model: ModelData): string[] => [ | |
`from espnet2.bin.tts_inference import Text2Speech | |
model = Text2Speech.from_pretrained("${model.id}") | |
speech, *_ = model("text to generate speech from")`, | |
]; | |
export const espnetASR = (model: ModelData): string[] => [ | |
`from espnet2.bin.asr_inference import Speech2Text | |
model = Speech2Text.from_pretrained( | |
"${model.id}" | |
) | |
speech, rate = soundfile.read("speech.wav") | |
text, *_ = model(speech)[0]`, | |
]; | |
const espnetUnknown = () => [`unknown model type (must be text-to-speech or automatic-speech-recognition)`]; | |
export const espnet = (model: ModelData): string[] => { | |
if (model.tags?.includes("text-to-speech")) { | |
return espnetTTS(model); | |
} else if (model.tags?.includes("automatic-speech-recognition")) { | |
return espnetASR(model); | |
} | |
return espnetUnknown(); | |
}; | |
export const fairseq = (model: ModelData): string[] => [ | |
`from fairseq.checkpoint_utils import load_model_ensemble_and_task_from_hf_hub | |
models, cfg, task = load_model_ensemble_and_task_from_hf_hub( | |
"${model.id}" | |
)`, | |
]; | |
export const flair = (model: ModelData): string[] => [ | |
`from flair.models import SequenceTagger | |
tagger = SequenceTagger.load("${model.id}")`, | |
]; | |
export const gliner = (model: ModelData): string[] => [ | |
`from gliner import GLiNER | |
model = GLiNER.from_pretrained("${model.id}")`, | |
]; | |
export const keras = (model: ModelData): string[] => [ | |
`from huggingface_hub import from_pretrained_keras | |
model = from_pretrained_keras("${model.id}") | |
`, | |
]; | |
export const keras_nlp = (model: ModelData): string[] => [ | |
`# Available backend options are: "jax", "tensorflow", "torch". | |
os.environ["KERAS_BACKEND"] = "tensorflow" | |
import keras_nlp | |
tokenizer = keras_nlp.models.Tokenizer.from_preset("hf://${model.id}") | |
backbone = keras_nlp.models.Backbone.from_preset("hf://${model.id}") | |
`, | |
]; | |
export const open_clip = (model: ModelData): string[] => [ | |
`import open_clip | |
model, preprocess_train, preprocess_val = open_clip.create_model_and_transforms('hf-hub:${model.id}') | |
tokenizer = open_clip.get_tokenizer('hf-hub:${model.id}')`, | |
]; | |
export const paddlenlp = (model: ModelData): string[] => { | |
if (model.config?.architectures?.[0]) { | |
const architecture = model.config.architectures[0]; | |
return [ | |
[ | |
`from paddlenlp.transformers import AutoTokenizer, ${architecture}`, | |
"", | |
`tokenizer = AutoTokenizer.from_pretrained("${model.id}", from_hf_hub=True)`, | |
`model = ${architecture}.from_pretrained("${model.id}", from_hf_hub=True)`, | |
].join("\n"), | |
]; | |
} else { | |
return [ | |
[ | |
`# ⚠️ Type of model unknown`, | |
`from paddlenlp.transformers import AutoTokenizer, AutoModel`, | |
"", | |
`tokenizer = AutoTokenizer.from_pretrained("${model.id}", from_hf_hub=True)`, | |
`model = AutoModel.from_pretrained("${model.id}", from_hf_hub=True)`, | |
].join("\n"), | |
]; | |
} | |
}; | |
export const pyannote_audio_pipeline = (model: ModelData): string[] => [ | |
`from pyannote.audio import Pipeline | |
pipeline = Pipeline.from_pretrained("${model.id}") | |
# inference on the whole file | |
pipeline("file.wav") | |
# inference on an excerpt | |
from pyannote.core import Segment | |
excerpt = Segment(start=2.0, end=5.0) | |
from pyannote.audio import Audio | |
waveform, sample_rate = Audio().crop("file.wav", excerpt) | |
pipeline({"waveform": waveform, "sample_rate": sample_rate})`, | |
]; | |
const pyannote_audio_model = (model: ModelData): string[] => [ | |
`from pyannote.audio import Model, Inference | |
model = Model.from_pretrained("${model.id}") | |
inference = Inference(model) | |
# inference on the whole file | |
inference("file.wav") | |
# inference on an excerpt | |
from pyannote.core import Segment | |
excerpt = Segment(start=2.0, end=5.0) | |
inference.crop("file.wav", excerpt)`, | |
]; | |
export const pyannote_audio = (model: ModelData): string[] => { | |
if (model.tags?.includes("pyannote-audio-pipeline")) { | |
return pyannote_audio_pipeline(model); | |
} | |
return pyannote_audio_model(model); | |
}; | |
const tensorflowttsTextToMel = (model: ModelData): string[] => [ | |
`from tensorflow_tts.inference import AutoProcessor, TFAutoModel | |
processor = AutoProcessor.from_pretrained("${model.id}") | |
model = TFAutoModel.from_pretrained("${model.id}") | |
`, | |
]; | |
const tensorflowttsMelToWav = (model: ModelData): string[] => [ | |
`from tensorflow_tts.inference import TFAutoModel | |
model = TFAutoModel.from_pretrained("${model.id}") | |
audios = model.inference(mels) | |
`, | |
]; | |
const tensorflowttsUnknown = (model: ModelData): string[] => [ | |
`from tensorflow_tts.inference import TFAutoModel | |
model = TFAutoModel.from_pretrained("${model.id}") | |
`, | |
]; | |
export const tensorflowtts = (model: ModelData): string[] => { | |
if (model.tags?.includes("text-to-mel")) { | |
return tensorflowttsTextToMel(model); | |
} else if (model.tags?.includes("mel-to-wav")) { | |
return tensorflowttsMelToWav(model); | |
} | |
return tensorflowttsUnknown(model); | |
}; | |
export const timm = (model: ModelData): string[] => [ | |
`import timm | |
model = timm.create_model("hf_hub:${model.id}", pretrained=True)`, | |
]; | |
const skopsPickle = (model: ModelData, modelFile: string) => { | |
return [ | |
`import joblib | |
from skops.hub_utils import download | |
download("${model.id}", "path_to_folder") | |
model = joblib.load( | |
"${modelFile}" | |
) | |
# only load pickle files from sources you trust | |
# read more about it here https://skops.readthedocs.io/en/stable/persistence.html`, | |
]; | |
}; | |
const skopsFormat = (model: ModelData, modelFile: string) => { | |
return [ | |
`from skops.hub_utils import download | |
from skops.io import load | |
download("${model.id}", "path_to_folder") | |
# make sure model file is in skops format | |
# if model is a pickle file, make sure it's from a source you trust | |
model = load("path_to_folder/${modelFile}")`, | |
]; | |
}; | |
const skopsJobLib = (model: ModelData) => { | |
return [ | |
`from huggingface_hub import hf_hub_download | |
import joblib | |
model = joblib.load( | |
hf_hub_download("${model.id}", "sklearn_model.joblib") | |
) | |
# only load pickle files from sources you trust | |
# read more about it here https://skops.readthedocs.io/en/stable/persistence.html`, | |
]; | |
}; | |
export const sklearn = (model: ModelData): string[] => { | |
if (model.tags?.includes("skops")) { | |
const skopsmodelFile = model.config?.sklearn?.model?.file; | |
const skopssaveFormat = model.config?.sklearn?.model_format; | |
if (!skopsmodelFile) { | |
return [`# ⚠️ Model filename not specified in config.json`]; | |
} | |
if (skopssaveFormat === "pickle") { | |
return skopsPickle(model, skopsmodelFile); | |
} else { | |
return skopsFormat(model, skopsmodelFile); | |
} | |
} else { | |
return skopsJobLib(model); | |
} | |
}; | |
export const fastai = (model: ModelData): string[] => [ | |
`from huggingface_hub import from_pretrained_fastai | |
learn = from_pretrained_fastai("${model.id}")`, | |
]; | |
export const sampleFactory = (model: ModelData): string[] => [ | |
`python -m sample_factory.huggingface.load_from_hub -r ${model.id} -d ./train_dir`, | |
]; | |
export const sentenceTransformers = (model: ModelData): string[] => [ | |
`from sentence_transformers import SentenceTransformer | |
model = SentenceTransformer("${model.id}")`, | |
]; | |
export const setfit = (model: ModelData): string[] => [ | |
`from setfit import SetFitModel | |
model = SetFitModel.from_pretrained("${model.id}")`, | |
]; | |
export const spacy = (model: ModelData): string[] => [ | |
`!pip install https://huggingface.co/${model.id}/resolve/main/${nameWithoutNamespace(model.id)}-any-py3-none-any.whl | |
# Using spacy.load(). | |
import spacy | |
nlp = spacy.load("${nameWithoutNamespace(model.id)}") | |
# Importing as module. | |
import ${nameWithoutNamespace(model.id)} | |
nlp = ${nameWithoutNamespace(model.id)}.load()`, | |
]; | |
export const span_marker = (model: ModelData): string[] => [ | |
`from span_marker import SpanMarkerModel | |
model = SpanMarkerModel.from_pretrained("${model.id}")`, | |
]; | |
export const stanza = (model: ModelData): string[] => [ | |
`import stanza | |
stanza.download("${nameWithoutNamespace(model.id).replace("stanza-", "")}") | |
nlp = stanza.Pipeline("${nameWithoutNamespace(model.id).replace("stanza-", "")}")`, | |
]; | |
const speechBrainMethod = (speechbrainInterface: string) => { | |
switch (speechbrainInterface) { | |
case "EncoderClassifier": | |
return "classify_file"; | |
case "EncoderDecoderASR": | |
case "EncoderASR": | |
return "transcribe_file"; | |
case "SpectralMaskEnhancement": | |
return "enhance_file"; | |
case "SepformerSeparation": | |
return "separate_file"; | |
default: | |
return undefined; | |
} | |
}; | |
export const speechbrain = (model: ModelData): string[] => { | |
const speechbrainInterface = model.config?.speechbrain?.speechbrain_interface; | |
if (speechbrainInterface === undefined) { | |
return [`# interface not specified in config.json`]; | |
} | |
const speechbrainMethod = speechBrainMethod(speechbrainInterface); | |
if (speechbrainMethod === undefined) { | |
return [`# interface in config.json invalid`]; | |
} | |
return [ | |
`from speechbrain.pretrained import ${speechbrainInterface} | |
model = ${speechbrainInterface}.from_hparams( | |
"${model.id}" | |
) | |
model.${speechbrainMethod}("file.wav")`, | |
]; | |
}; | |
export const transformers = (model: ModelData): string[] => { | |
const info = model.transformersInfo; | |
if (!info) { | |
return [`# ⚠️ Type of model unknown`]; | |
} | |
const remote_code_snippet = model.tags?.includes(TAG_CUSTOM_CODE) ? ", trust_remote_code=True" : ""; | |
let autoSnippet: string; | |
if (info.processor) { | |
const varName = | |
info.processor === "AutoTokenizer" | |
? "tokenizer" | |
: info.processor === "AutoFeatureExtractor" | |
? "extractor" | |
: "processor"; | |
autoSnippet = [ | |
"# Load model directly", | |
`from transformers import ${info.processor}, ${info.auto_model}`, | |
"", | |
`${varName} = ${info.processor}.from_pretrained("${model.id}"` + remote_code_snippet + ")", | |
`model = ${info.auto_model}.from_pretrained("${model.id}"` + remote_code_snippet + ")", | |
].join("\n"); | |
} else { | |
autoSnippet = [ | |
"# Load model directly", | |
`from transformers import ${info.auto_model}`, | |
`model = ${info.auto_model}.from_pretrained("${model.id}"` + remote_code_snippet + ")", | |
].join("\n"); | |
} | |
if (model.pipeline_tag) { | |
const pipelineSnippet = [ | |
"# Use a pipeline as a high-level helper", | |
"from transformers import pipeline", | |
"", | |
`pipe = pipeline("${model.pipeline_tag}", model="${model.id}"` + remote_code_snippet + ")", | |
].join("\n"); | |
return [pipelineSnippet, autoSnippet]; | |
} | |
return [autoSnippet]; | |
}; | |
export const transformersJS = (model: ModelData): string[] => { | |
if (!model.pipeline_tag) { | |
return [`// ⚠️ Unknown pipeline tag`]; | |
} | |
const libName = "@xenova/transformers"; | |
return [ | |
`// npm i ${libName} | |
import { pipeline } from '${libName}'; | |
// Allocate pipeline | |
const pipe = await pipeline('${model.pipeline_tag}', '${model.id}');`, | |
]; | |
}; | |
const peftTask = (peftTaskType?: string) => { | |
switch (peftTaskType) { | |
case "CAUSAL_LM": | |
return "CausalLM"; | |
case "SEQ_2_SEQ_LM": | |
return "Seq2SeqLM"; | |
case "TOKEN_CLS": | |
return "TokenClassification"; | |
case "SEQ_CLS": | |
return "SequenceClassification"; | |
default: | |
return undefined; | |
} | |
}; | |
export const peft = (model: ModelData): string[] => { | |
const { base_model_name_or_path: peftBaseModel, task_type: peftTaskType } = model.config?.peft ?? {}; | |
const pefttask = peftTask(peftTaskType); | |
if (!pefttask) { | |
return [`Task type is invalid.`]; | |
} | |
if (!peftBaseModel) { | |
return [`Base model is not found.`]; | |
} | |
return [ | |
`from peft import PeftModel, PeftConfig | |
from transformers import AutoModelFor${pefttask} | |
config = PeftConfig.from_pretrained("${model.id}") | |
base_model = AutoModelFor${pefttask}.from_pretrained("${peftBaseModel}") | |
model = PeftModel.from_pretrained(base_model, "${model.id}")`, | |
]; | |
}; | |
export const fasttext = (model: ModelData): string[] => [ | |
`from huggingface_hub import hf_hub_download | |
import fasttext | |
model = fasttext.load_model(hf_hub_download("${model.id}", "model.bin"))`, | |
]; | |
export const stableBaselines3 = (model: ModelData): string[] => [ | |
`from huggingface_sb3 import load_from_hub | |
checkpoint = load_from_hub( | |
repo_id="${model.id}", | |
filename="{MODEL FILENAME}.zip", | |
)`, | |
]; | |
const nemoDomainResolver = (domain: string, model: ModelData): string[] | undefined => { | |
switch (domain) { | |
case "ASR": | |
return [ | |
`import nemo.collections.asr as nemo_asr | |
asr_model = nemo_asr.models.ASRModel.from_pretrained("${model.id}") | |
transcriptions = asr_model.transcribe(["file.wav"])`, | |
]; | |
default: | |
return undefined; | |
} | |
}; | |
export const mlAgents = (model: ModelData): string[] => [ | |
`mlagents-load-from-hf --repo-id="${model.id}" --local-dir="./download: string[]s"`, | |
]; | |
export const sentis = (/* model: ModelData */): string[] => [ | |
`string modelName = "[Your model name here].sentis"; | |
Model model = ModelLoader.Load(Application.streamingAssetsPath + "/" + modelName); | |
IWorker engine = WorkerFactory.CreateWorker(BackendType.GPUCompute, model); | |
// Please see provided C# file for more details | |
`, | |
]; | |
export const voicecraft = (model: ModelData): string[] => [ | |
`from voicecraft import VoiceCraft | |
model = VoiceCraft.from_pretrained("${model.id}")`, | |
]; | |
export const mlx = (model: ModelData): string[] => [ | |
`pip install huggingface_hub hf_transfer | |
export HF_HUB_ENABLE_HF_TRANS: string[]FER=1 | |
huggingface-cli download --local-dir ${nameWithoutNamespace(model.id)} ${model.id}`, | |
]; | |
export const mlxim = (model: ModelData): string[] => [ | |
`from mlxim.model import create_model | |
model = create_model(${model.id})`, | |
]; | |
export const nemo = (model: ModelData): string[] => { | |
let command: string[] | undefined = undefined; | |
// Resolve the tag to a nemo domain/sub-domain | |
if (model.tags?.includes("automatic-speech-recognition")) { | |
command = nemoDomainResolver("ASR", model); | |
} | |
return command ?? [`# tag did not correspond to a valid NeMo domain.`]; | |
}; | |
export const pythae = (model: ModelData): string[] => [ | |
`from pythae.models import AutoModel | |
model = AutoModel.load_from_hf_hub("${model.id}")`, | |
]; | |
const musicgen = (model: ModelData): string[] => [ | |
`from audiocraft.models import MusicGen | |
model = MusicGen.get_pretrained("${model.id}") | |
descriptions = ['happy rock', 'energetic EDM', 'sad jazz'] | |
wav = model.generate(descriptions) # generates 3 samples.`, | |
]; | |
const magnet = (model: ModelData): string[] => [ | |
`from audiocraft.models import MAGNeT | |
model = MAGNeT.get_pretrained("${model.id}") | |
descriptions = ['disco beat', 'energetic EDM', 'funky groove'] | |
wav = model.generate(descriptions) # generates 3 samples.`, | |
]; | |
const audiogen = (model: ModelData): string[] => [ | |
`from audiocraft.models import AudioGen | |
model = AudioGen.get_pretrained("${model.id}") | |
model.set_generation_params(duration=5) # generate 5 seconds. | |
descriptions = ['dog barking', 'sirene of an emergency vehicle', 'footsteps in a corridor'] | |
wav = model.generate(descriptions) # generates 3 samples.`, | |
]; | |
export const audiocraft = (model: ModelData): string[] => { | |
if (model.tags?.includes("musicgen")) { | |
return musicgen(model); | |
} else if (model.tags?.includes("audiogen")) { | |
return audiogen(model); | |
} else if (model.tags?.includes("magnet")) { | |
return magnet(model); | |
} else { | |
return [`# Type of model unknown.`]; | |
} | |
}; | |
//#endregion | |