xinchen9 commited on
Commit
0138b9d
1 Parent(s): f8a0e2e

[Update]Comment line 70-138

Browse files
Files changed (1) hide show
  1. app.py +69 -69
app.py CHANGED
@@ -67,75 +67,75 @@ methods = list(set(raw_data['Method']))
67
  metrics = ["Chruch","Parachute","Tench","Garbage Turch","Van Gogh","Violence","Illegal Activity","Nudity"]
68
 
69
  # Searching and filtering
70
- def update_table(
71
- hidden_df: pd.DataFrame,
72
- columns: list,
73
- type_query: list,
74
- precision_query: str,
75
- size_query: list,
76
- show_deleted: bool,
77
- query: str,
78
- ):
79
- filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
80
- filtered_df = filter_queries(query, filtered_df)
81
- df = select_columns(filtered_df, columns)
82
- return df
83
-
84
-
85
- def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
86
- return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]
87
-
88
-
89
- def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
90
- always_here_cols = [
91
- AutoEvalColumn.model_type_symbol.name,
92
- AutoEvalColumn.model.name,
93
- ]
94
- # We use COLS to maintain sorting
95
- filtered_df = df[
96
- always_here_cols + [c for c in COLS if c in df.columns and c in columns]
97
- ]
98
- return filtered_df
99
-
100
-
101
- def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
102
- final_df = []
103
- if query != "":
104
- queries = [q.strip() for q in query.split(";")]
105
- for _q in queries:
106
- _q = _q.strip()
107
- if _q != "":
108
- temp_filtered_df = search_table(filtered_df, _q)
109
- if len(temp_filtered_df) > 0:
110
- final_df.append(temp_filtered_df)
111
- if len(final_df) > 0:
112
- filtered_df = pd.concat(final_df)
113
- filtered_df = filtered_df.drop_duplicates(
114
- subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
115
- )
116
-
117
- return filtered_df
118
-
119
-
120
- def filter_models(
121
- df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
122
- ) -> pd.DataFrame:
123
- # Show all models
124
- if show_deleted:
125
- filtered_df = df
126
- else: # Show only still on the hub models
127
- filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
128
-
129
- type_emoji = [t[0] for t in type_query]
130
- filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
131
- filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
132
-
133
- numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
134
- params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
135
- mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
136
- filtered_df = filtered_df.loc[mask]
137
-
138
- return filtered_df
139
 
140
 
141
  demo = gr.Blocks(css=custom_css)
 
67
  metrics = ["Chruch","Parachute","Tench","Garbage Turch","Van Gogh","Violence","Illegal Activity","Nudity"]
68
 
69
  # Searching and filtering
70
+ # def update_table(
71
+ # hidden_df: pd.DataFrame,
72
+ # columns: list,
73
+ # type_query: list,
74
+ # precision_query: str,
75
+ # size_query: list,
76
+ # show_deleted: bool,
77
+ # query: str,
78
+ # ):
79
+ # filtered_df = filter_models(hidden_df, type_query, size_query, precision_query, show_deleted)
80
+ # filtered_df = filter_queries(query, filtered_df)
81
+ # df = select_columns(filtered_df, columns)
82
+ # return df
83
+
84
+
85
+ # def search_table(df: pd.DataFrame, query: str) -> pd.DataFrame:
86
+ # return df[(df[AutoEvalColumn.model.name].str.contains(query, case=False))]
87
+
88
+
89
+ # def select_columns(df: pd.DataFrame, columns: list) -> pd.DataFrame:
90
+ # always_here_cols = [
91
+ # AutoEvalColumn.model_type_symbol.name,
92
+ # AutoEvalColumn.model.name,
93
+ # ]
94
+ # # We use COLS to maintain sorting
95
+ # filtered_df = df[
96
+ # always_here_cols + [c for c in COLS if c in df.columns and c in columns]
97
+ # ]
98
+ # return filtered_df
99
+
100
+
101
+ # def filter_queries(query: str, filtered_df: pd.DataFrame) -> pd.DataFrame:
102
+ # final_df = []
103
+ # if query != "":
104
+ # queries = [q.strip() for q in query.split(";")]
105
+ # for _q in queries:
106
+ # _q = _q.strip()
107
+ # if _q != "":
108
+ # temp_filtered_df = search_table(filtered_df, _q)
109
+ # if len(temp_filtered_df) > 0:
110
+ # final_df.append(temp_filtered_df)
111
+ # if len(final_df) > 0:
112
+ # filtered_df = pd.concat(final_df)
113
+ # filtered_df = filtered_df.drop_duplicates(
114
+ # subset=[AutoEvalColumn.model.name, AutoEvalColumn.precision.name, AutoEvalColumn.revision.name]
115
+ # )
116
+
117
+ # return filtered_df
118
+
119
+
120
+ # def filter_models(
121
+ # df: pd.DataFrame, type_query: list, size_query: list, precision_query: list, show_deleted: bool
122
+ # ) -> pd.DataFrame:
123
+ # # Show all models
124
+ # if show_deleted:
125
+ # filtered_df = df
126
+ # else: # Show only still on the hub models
127
+ # filtered_df = df[df[AutoEvalColumn.still_on_hub.name] == True]
128
+
129
+ # type_emoji = [t[0] for t in type_query]
130
+ # filtered_df = filtered_df.loc[df[AutoEvalColumn.model_type_symbol.name].isin(type_emoji)]
131
+ # filtered_df = filtered_df.loc[df[AutoEvalColumn.precision.name].isin(precision_query + ["None"])]
132
+
133
+ # numeric_interval = pd.IntervalIndex(sorted([NUMERIC_INTERVALS[s] for s in size_query]))
134
+ # params_column = pd.to_numeric(df[AutoEvalColumn.params.name], errors="coerce")
135
+ # mask = params_column.apply(lambda x: any(numeric_interval.contains(x)))
136
+ # filtered_df = filtered_df.loc[mask]
137
+
138
+ # return filtered_df
139
 
140
 
141
  demo = gr.Blocks(css=custom_css)