Spaces:
Running
on
Zero
Running
on
Zero
import sys | |
sys.path.append('./') | |
import spaces | |
import gradio as gr | |
import torch | |
from ip_adapter.utils import BLOCKS as BLOCKS | |
from ip_adapter.utils import controlnet_BLOCKS as controlnet_BLOCKS | |
from ip_adapter.utils import resize_content | |
import cv2 | |
import numpy as np | |
import random | |
from PIL import Image | |
from transformers import AutoImageProcessor, AutoModel | |
from diffusers import ( | |
AutoencoderKL, | |
ControlNetModel, | |
StableDiffusionXLControlNetPipeline, | |
) | |
from ip_adapter import CSGO | |
from transformers import BlipProcessor, BlipForConditionalGeneration | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32 | |
import os | |
os.system("git lfs install") | |
os.system("git clone https://huggingface.co/h94/IP-Adapter") | |
os.system("mv IP-Adapter/sdxl_models sdxl_models") | |
from huggingface_hub import hf_hub_download | |
# hf_hub_download(repo_id="h94/IP-Adapter", filename="sdxl_models/image_encoder", local_dir="./sdxl_models/image_encoder") | |
hf_hub_download(repo_id="InstantX/CSGO", filename="csgo_4_32.bin", local_dir="./CSGO/") | |
os.system('rm -rf IP-Adapter/models') | |
base_model_path = "stabilityai/stable-diffusion-xl-base-1.0" | |
image_encoder_path = "sdxl_models/image_encoder" | |
csgo_ckpt ='./CSGO/csgo_4_32.bin' | |
pretrained_vae_name_or_path ='madebyollin/sdxl-vae-fp16-fix' | |
controlnet_path = "TTPlanet/TTPLanet_SDXL_Controlnet_Tile_Realistic" | |
weight_dtype = torch.float16 | |
os.system("git clone https://huggingface.co/TTPlanet/TTPLanet_SDXL_Controlnet_Tile_Realistic") | |
os.system("mv TTPLanet_SDXL_Controlnet_Tile_Realistic/TTPLANET_Controlnet_Tile_realistic_v2_fp16.safetensors TTPLanet_SDXL_Controlnet_Tile_Realistic/diffusion_pytorch_model.safetensors") | |
os.system('rm -rf TTPLanet_SDXL_Controlnet_Tile_Realistic/TTPLANET_Controlnet_Tile_realistic_v1_fp16.safetensors') | |
os.system('rm -rf TTPLanet_SDXL_Controlnet_Tile_Realistic/TTPLANET_Controlnet_Tile_realistic_v1_fp16.safetensors') | |
controlnet_path = "./TTPLanet_SDXL_Controlnet_Tile_Realistic" | |
# os.system('git clone https://huggingface.co/InstantX/CSGO') | |
# os.system('rm -rf CSGO/csgo.bin') | |
vae = AutoencoderKL.from_pretrained(pretrained_vae_name_or_path,torch_dtype=torch.float16) | |
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16,use_safetensors=True) | |
pipe = StableDiffusionXLControlNetPipeline.from_pretrained( | |
base_model_path, | |
controlnet=controlnet, | |
torch_dtype=torch.float16, | |
add_watermarker=False, | |
vae=vae | |
) | |
pipe.enable_vae_tiling() | |
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-large") | |
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large").to(device) | |
target_content_blocks = BLOCKS['content'] | |
target_style_blocks = BLOCKS['style'] | |
controlnet_target_content_blocks = controlnet_BLOCKS['content'] | |
controlnet_target_style_blocks = controlnet_BLOCKS['style'] | |
csgo = CSGO(pipe, image_encoder_path, csgo_ckpt, device, num_content_tokens=4, num_style_tokens=32, | |
target_content_blocks=target_content_blocks, target_style_blocks=target_style_blocks, | |
controlnet_adapter=True, | |
controlnet_target_content_blocks=controlnet_target_content_blocks, | |
controlnet_target_style_blocks=controlnet_target_style_blocks, | |
content_model_resampler=True, | |
style_model_resampler=True, | |
) | |
MAX_SEED = np.iinfo(np.int32).max | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def get_example(): | |
case = [ | |
[ | |
"./assets/img_0.png", | |
'./assets/img_1.png', | |
"Image-Driven Style Transfer", | |
"there is a small house with a sheep statue on top of it", | |
0.6, | |
1.0, | |
7.0, | |
42 | |
], | |
[ | |
None, | |
'./assets/img_1.png', | |
"Text-Driven Style Synthesis", | |
"a cat", | |
0.01, | |
1.0, | |
7.0, | |
42 | |
], | |
[ | |
None, | |
'./assets/img_2.png', | |
"Text-Driven Style Synthesis", | |
"a cat", | |
0.01, | |
1.0, | |
7.0, | |
42, | |
], | |
[ | |
"./assets/img_0.png", | |
'./assets/img_1.png', | |
"Text Edit-Driven Style Synthesis", | |
"there is a small house", | |
0.4, | |
1.0, | |
7.0, | |
42, | |
], | |
] | |
return case | |
def run_for_examples(content_image_pil,style_image_pil,target, prompt, scale_c, scale_s,guidance_scale,seed): | |
return create_image( | |
content_image_pil=content_image_pil, | |
style_image_pil=style_image_pil, | |
prompt=prompt, | |
scale_c=scale_c, | |
scale_s=scale_s, | |
guidance_scale=guidance_scale, | |
num_samples=2, | |
num_inference_steps=50, | |
seed=seed, | |
target=target, | |
) | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
def image_grid(imgs, rows, cols): | |
assert len(imgs) == rows * cols | |
w, h = imgs[0].size | |
grid = Image.new('RGB', size=(cols * w, rows * h)) | |
grid_w, grid_h = grid.size | |
for i, img in enumerate(imgs): | |
grid.paste(img, box=(i % cols * w, i // cols * h)) | |
return grid | |
def create_image(content_image_pil, | |
style_image_pil, | |
prompt, | |
scale_c, | |
scale_s, | |
guidance_scale, | |
num_samples, | |
num_inference_steps, | |
seed, | |
target="Image-Driven Style Transfer", | |
): | |
if content_image_pil is None: | |
content_image_pil = Image.fromarray( | |
np.zeros((1024, 1024, 3), dtype=np.uint8)).convert('RGB') | |
if prompt == '': | |
inputs = blip_processor(content_image_pil, return_tensors="pt").to(device) | |
out = blip_model.generate(**inputs) | |
prompt = blip_processor.decode(out[0], skip_special_tokens=True) | |
width, height, content_image = resize_content(content_image_pil) | |
style_image = style_image_pil | |
neg_content_prompt='text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry' | |
if target =="Image-Driven Style Transfer": | |
images = csgo.generate(pil_content_image=content_image, pil_style_image=style_image, | |
prompt=prompt, | |
negative_prompt=neg_content_prompt, | |
height=height, | |
width=width, | |
content_scale=1.0, | |
style_scale=scale_s, | |
guidance_scale=guidance_scale, | |
num_images_per_prompt=num_samples, | |
num_inference_steps=num_inference_steps, | |
num_samples=1, | |
seed=seed, | |
image=content_image.convert('RGB'), | |
controlnet_conditioning_scale=scale_c, | |
) | |
elif target =="Text-Driven Style Synthesis": | |
content_image = Image.fromarray( | |
np.zeros((1024, 1024, 3), dtype=np.uint8)).convert('RGB') | |
images = csgo.generate(pil_content_image=content_image, pil_style_image=style_image, | |
prompt=prompt, | |
negative_prompt="text, watermark, lowres, low quality, worst quality, deformed, glitch, low contrast, noisy, saturation, blurry", | |
height=height, | |
width=width, | |
content_scale=0.5, | |
style_scale=scale_s, | |
guidance_scale=7, | |
num_images_per_prompt=num_samples, | |
num_inference_steps=num_inference_steps, | |
num_samples=1, | |
seed=42, | |
image=content_image.convert('RGB'), | |
controlnet_conditioning_scale=scale_c, | |
) | |
elif target =="Text Edit-Driven Style Synthesis": | |
images = csgo.generate(pil_content_image=content_image, pil_style_image=style_image, | |
prompt=prompt, | |
negative_prompt=neg_content_prompt, | |
height=height, | |
width=width, | |
content_scale=1.0, | |
style_scale=scale_s, | |
guidance_scale=guidance_scale, | |
num_images_per_prompt=num_samples, | |
num_inference_steps=num_inference_steps, | |
num_samples=1, | |
seed=seed, | |
image=content_image.convert('RGB'), | |
controlnet_conditioning_scale=scale_c, | |
) | |
return [image_grid(images, 1, num_samples)] | |
def pil_to_cv2(image_pil): | |
image_np = np.array(image_pil) | |
image_cv2 = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR) | |
return image_cv2 | |
# Description | |
title = r""" | |
<h1 align="center">CSGO: Content-Style Composition in Text-to-Image Generation</h1> | |
""" | |
description = r""" | |
<b>Official π€ Gradio demo</b> for <a href='https://github.com/instantX-research/CSGO' target='_blank'><b>CSGO: Content-Style Composition in Text-to-Image Generation</b></a>.<br> | |
How to use:<br> | |
1. Upload a content image if you want to use image-driven style transfer. | |
2. Upload a style image. | |
3. Sets the type of task to perform, by default image-driven style transfer is performed. Options are <b>Image-driven style transfer, Text-driven style synthesis, and Text editing-driven style synthesis<b>. | |
4. <b>If you choose a text-driven task, enter your desired prompt<b>. | |
5. If you don't provide a prompt, the default is to use the BLIP model to generate the caption. We suggest that by providing detailed prompts for Content images, CSGO is able to effectively guarantee content. | |
6. Click the <b>Submit</b> button to begin customization. | |
7. Share your stylized photo with your friends and enjoy! π | |
Advanced usage:<br> | |
1. Click advanced options. | |
2. Choose different guidance and steps. | |
""" | |
article = r""" | |
--- | |
π **Tips** | |
In CSGO, the more accurate the text prompts for content images, the better the content retention. | |
Text-driven style synthesis and text-edit-driven style synthesis are expected to be more stable in the next release. | |
--- | |
π **Citation** | |
<br> | |
If our work is helpful for your research or applications, please cite us via: | |
```bibtex | |
@article{xing2024csgo, | |
title={CSGO: Content-Style Composition in Text-to-Image Generation}, | |
author={Peng Xing and Haofan Wang and Yanpeng Sun and Qixun Wang and Xu Bai and Hao Ai and Renyuan Huang and Zechao Li}, | |
year={2024}, | |
journal = {arXiv 2408.16766}, | |
} | |
``` | |
π§ **Contact** | |
<br> | |
If you have any questions, please feel free to open an issue or directly reach us out at <b>[email protected]</b>. | |
""" | |
block = gr.Blocks(css="footer {visibility: hidden}").queue(max_size=10, api_open=False) | |
with block: | |
# description | |
gr.Markdown(title) | |
gr.Markdown(description) | |
with gr.Tabs(): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
content_image_pil = gr.Image(label="Content Image (optional)", type='pil') | |
style_image_pil = gr.Image(label="Style Image", type='pil') | |
target = gr.Radio(["Image-Driven Style Transfer", "Text-Driven Style Synthesis", "Text Edit-Driven Style Synthesis"], | |
value="Image-Driven Style Transfer", | |
label="task") | |
# prompt_type = gr.Radio(["caption of Blip", "user input"], | |
# value="caption of Blip", | |
# label="prompt type") | |
prompt = gr.Textbox(label="Prompt", | |
value="there is a small house with a sheep statue on top of it") | |
prompt_type = gr.CheckboxGroup( | |
["caption of Blip", "user input"], label="prompt_type", value=["caption of Blip"], | |
info="Choose to enter more detailed prompts yourself or use the blip model to describe content images." | |
) | |
if prompt_type == "caption of Blip" and target == "Image-Driven Style Transfer": | |
prompt ='' | |
scale_c = gr.Slider(minimum=0, maximum=2.0, step=0.01, value=0.6, label="Content Scale") | |
scale_s = gr.Slider(minimum=0, maximum=2.0, step=0.01, value=1.0, label="Style Scale") | |
with gr.Accordion(open=False, label="Advanced Options"): | |
guidance_scale = gr.Slider(minimum=1, maximum=15.0, step=0.01, value=7.0, label="guidance scale") | |
num_samples = gr.Slider(minimum=1, maximum=4.0, step=1.0, value=1.0, label="num samples") | |
num_inference_steps = gr.Slider(minimum=5, maximum=100.0, step=1.0, value=50, | |
label="num inference steps") | |
seed = gr.Slider(minimum=-1000000, maximum=1000000, value=1, step=1, label="Seed Value") | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
generate_button = gr.Button("Generate Image") | |
with gr.Column(): | |
generated_image = gr.Gallery(label="Generated Image") | |
generate_button.click( | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
queue=False, | |
api_name=False, | |
).then( | |
fn=create_image, | |
inputs=[content_image_pil, | |
style_image_pil, | |
prompt, | |
scale_c, | |
scale_s, | |
guidance_scale, | |
num_samples, | |
num_inference_steps, | |
seed, | |
target,], | |
outputs=[generated_image]) | |
gr.Examples( | |
examples=get_example(), | |
inputs=[content_image_pil,style_image_pil,target, prompt, scale_c, scale_s,guidance_scale,seed], | |
fn=run_for_examples, | |
outputs=[generated_image], | |
cache_examples=False, | |
) | |
gr.Markdown(article) | |
block.launch() | |