|
|
|
|
|
|
|
|
|
|
|
import os |
|
import torch |
|
import torch.nn as nn |
|
from torch.distributions.normal import Normal |
|
import torch.nn.functional as F |
|
import numpy as np |
|
|
|
from transformers.activations import ACT2FN |
|
from .adapter import Adapter |
|
from collections import OrderedDict |
|
from copy import deepcopy |
|
|
|
|
|
|
|
|
|
class MLP(nn.Module): |
|
def __init__(self, input_size:int, output_size:int, hidden_size:int): |
|
super(MLP, self).__init__() |
|
self.fc1 = nn.Linear(input_size, hidden_size) |
|
self.fc2 = nn.Linear(hidden_size, output_size) |
|
self.dropout = nn.Dropout(0.1) |
|
self.activation = ACT2FN["gelu"] |
|
self.log_soft = nn.LogSoftmax(1) |
|
self.apply(self.init_weights) |
|
|
|
def init_weights(self, m: nn.Module, std=1e-3): |
|
if isinstance(m, nn.Linear): |
|
torch.nn.init.normal_(m.weight, std=std) |
|
torch.nn.init.normal_(m.bias, std=std) |
|
m.weight.data = torch.clamp(m.weight.data, min=-2 * std, max=2 * std) |
|
m.bias.data = torch.clamp(m.bias.data, min=-2 * std, max=2 * std) |
|
elif isinstance(m, nn.LayerNorm): |
|
m.bias.data.zero_() |
|
m.weight.data.fill_(1.0) |
|
|
|
def forward(self, x): |
|
out = self.fc1(x) |
|
out = self.activation(out) |
|
out = self.dropout(out) |
|
out = self.fc2(out) |
|
out = self.log_soft(out) |
|
return out |
|
|
|
|
|
|
|
class SparseDispatcher(object): |
|
"""Helper for implementing a mixture of experts. |
|
The purpose of this class is to create input minibatches for the |
|
experts and to combine the results of the experts to form a unified |
|
output tensor. |
|
There are two functions: |
|
dispatch - take an input Tensor and create input Tensors for each expert. |
|
combine - take output Tensors from each expert and form a combined output |
|
Tensor. Outputs from different experts for the same batch element are |
|
summed together, weighted by the provided "gates". |
|
The class is initialized with a "gates" Tensor, which specifies which |
|
batch elements go to which experts, and the weights to use when combining |
|
the outputs. Batch element b is sent to expert e iff gates[b, e] != 0. |
|
The inputs and outputs are all two-dimensional [batch, depth]. |
|
Caller is responsible for collapsing additional dimensions prior to |
|
calling this class and reshaping the output to the original shape. |
|
See common_layers.reshape_like(). |
|
Example use: |
|
gates: a float32 `Tensor` with shape `[batch_size, num_experts]` |
|
inputs: a float32 `Tensor` with shape `[batch_size, input_size]` |
|
experts: a list of length `num_experts` containing sub-networks. |
|
dispatcher = SparseDispatcher(num_experts, gates) |
|
expert_inputs = dispatcher.dispatch(inputs) |
|
expert_outputs = [experts[i](expert_inputs[i]) for i in range(num_experts)] |
|
outputs = dispatcher.combine(expert_outputs) |
|
The preceding code sets the output for a particular example b to: |
|
output[b] = Sum_i(gates[b, i] * experts[i](inputs[b])) |
|
This class takes advantage of sparsity in the gate matrix by including in the |
|
`Tensor`s for expert i only the batch elements for which `gates[b, i] > 0`. |
|
""" |
|
|
|
def __init__(self, num_experts, gates): |
|
"""Create a SparseDispatcher.""" |
|
|
|
self._gates = gates |
|
self._num_experts = num_experts |
|
|
|
sorted_experts, index_sorted_experts = torch.nonzero(gates).sort(0) |
|
|
|
_, self._expert_index = sorted_experts.split(1, dim=1) |
|
|
|
self._batch_index = sorted_experts[index_sorted_experts[:, 1],0] |
|
|
|
self._part_sizes = list((gates > 0).sum(0).cpu().numpy()) |
|
|
|
gates_exp = gates[self._batch_index.flatten()] |
|
self._nonzero_gates = torch.gather(gates_exp, 1, self._expert_index) |
|
|
|
def dispatch(self, inp): |
|
"""Create one input Tensor for each expert. |
|
The `Tensor` for a expert `i` contains the slices of `inp` corresponding |
|
to the batch elements `b` where `gates[b, i] > 0`. |
|
Args: |
|
inp: a `Tensor` of shape "[batch_size, <extra_input_dims>]` |
|
Returns: |
|
a list of `num_experts` `Tensor`s with shapes |
|
`[expert_batch_size_i, <extra_input_dims>]`. |
|
""" |
|
|
|
|
|
|
|
|
|
inp_exp = inp[self._batch_index].squeeze(1) |
|
return torch.split(inp_exp, self._part_sizes, dim=0) |
|
|
|
|
|
def combine(self, expert_out, multiply_by_gates=True): |
|
"""Sum together the expert output, weighted by the gates. |
|
The slice corresponding to a particular batch element `b` is computed |
|
as the sum over all experts `i` of the expert output, weighted by the |
|
corresponding gate values. If `multiply_by_gates` is set to False, the |
|
gate values are ignored. |
|
Args: |
|
expert_out: a list of `num_experts` `Tensor`s, each with shape |
|
`[expert_batch_size_i, <extra_output_dims>]`. |
|
multiply_by_gates: a boolean |
|
Returns: |
|
a `Tensor` with shape `[batch_size, <extra_output_dims>]`. |
|
""" |
|
|
|
|
|
|
|
stitched = torch.cat(expert_out, 0) |
|
|
|
if multiply_by_gates: |
|
if len(stitched.shape) == 3: |
|
stitched = stitched.mul(self._nonzero_gates.unsqueeze(1)) |
|
else: |
|
stitched = stitched.mul(self._nonzero_gates) |
|
|
|
if len(stitched.shape) == 3: |
|
zeros = torch.zeros(self._gates.size(0), expert_out[-1].size(1), expert_out[-1].size(-1), requires_grad=True, device=stitched.device) |
|
else: |
|
zeros = torch.zeros(self._gates.size(0), expert_out[-1].size(1), requires_grad=True, device=stitched.device) |
|
|
|
combined = zeros.index_add(0, self._batch_index, stitched.float()) |
|
|
|
|
|
|
|
|
|
|
|
return combined |
|
|
|
|
|
def expert_to_gates(self): |
|
"""Gate values corresponding to the examples in the per-expert `Tensor`s. |
|
Returns: |
|
a list of `num_experts` one-dimensional `Tensor`s with type `tf.float32` |
|
and shapes `[expert_batch_size_i]` |
|
""" |
|
|
|
return torch.split(self._nonzero_gates, self._part_sizes, dim=0) |
|
|
|
|
|
|
|
|
|
class MoE(nn.Module): |
|
|
|
"""Call a Sparsely gated mixture of experts layer with 1-layer Feed-Forward networks as experts. |
|
Args: |
|
input_size: integer - size of the input |
|
output_size: integer - size of the input |
|
num_experts: an integer - number of experts |
|
hidden_size: an integer - hidden size of the experts |
|
noisy_gating: a boolean |
|
k: an integer - how many experts to use for each batch element |
|
""" |
|
|
|
def __init__(self, |
|
noisy_gating = True, |
|
ds_factor = 8.0, |
|
num_experts = 4, |
|
moe_input_size = 768, |
|
top_k = 2, |
|
dropout = 0.1, |
|
gating = 'linear', |
|
routing = None, |
|
layer_id = 0 |
|
): |
|
super(MoE, self).__init__() |
|
self.noisy_gating = noisy_gating |
|
self.num_experts = num_experts |
|
self.input_size = moe_input_size |
|
self.k = top_k |
|
self.layer_id = layer_id |
|
|
|
|
|
|
|
self.gating = gating |
|
self.experts = nn.ModuleList([Adapter(ds_factor, moe_input_size, dropout=dropout) for i in range(self.num_experts)]) |
|
self.routing = routing |
|
self.infer_expert = None |
|
|
|
|
|
if self.routing != 'random': |
|
if gating == 'linear': |
|
|
|
self.w_gate = nn.Parameter(torch.zeros(self.input_size, num_experts), requires_grad=True) |
|
elif gating == 'cosine': |
|
self.w_gate = CosineTopKGate(self.input_size, self.num_experts) |
|
self.w_noise = nn.Parameter(torch.zeros(self.input_size, self.num_experts), requires_grad=True) |
|
|
|
self.softplus = nn.Softplus() |
|
self.softmax = nn.Softmax(-1) |
|
self.register_buffer("mean", torch.tensor([0.0])) |
|
self.register_buffer("std", torch.tensor([1.0])) |
|
|
|
assert(self.k <= self.num_experts) |
|
|
|
def cv_squared(self, x): |
|
"""The squared coefficient of variation of a sample. |
|
Useful as a loss to encourage a positive distribution to be more uniform. |
|
Epsilons added for numerical stability. |
|
Returns 0 for an empty Tensor. |
|
Args: |
|
x: a `Tensor`. |
|
Returns: |
|
a `Scalar`. |
|
""" |
|
eps = 1e-10 |
|
|
|
if x.shape[0] == 1: |
|
return torch.Tensor([0]) |
|
if len(x.shape) == 2: |
|
x = x.sum(dim=0) |
|
return x.float().var() / (x.float().mean()**2 + eps) |
|
|
|
|
|
def _gates_to_load(self, gates): |
|
"""Compute the true load per expert, given the gates. |
|
The load is the number of examples for which the corresponding gate is >0. |
|
Args: |
|
gates: a `Tensor` of shape [batch_size, n] |
|
Returns: |
|
a float32 `Tensor` of shape [n] |
|
""" |
|
return (gates > 0).sum(0) |
|
|
|
|
|
def _prob_in_top_k(self, clean_values, noisy_values, noise_stddev, noisy_top_values): |
|
"""Helper function to NoisyTopKGating. |
|
Computes the probability that value is in top k, given different random noise. |
|
This gives us a way of backpropagating from a loss that balances the number |
|
of times each expert is in the top k experts per example. |
|
In the case of no noise, pass in None for noise_stddev, and the result will |
|
not be differentiable. |
|
Args: |
|
clean_values: a `Tensor` of shape [batch, n]. |
|
noisy_values: a `Tensor` of shape [batch, n]. Equal to clean values plus |
|
normally distributed noise with standard deviation noise_stddev. |
|
noise_stddev: a `Tensor` of shape [batch, n], or None |
|
noisy_top_values: a `Tensor` of shape [batch, m]. |
|
"values" Output of tf.top_k(noisy_top_values, m). m >= k+1 |
|
Returns: |
|
a `Tensor` of shape [batch, n]. |
|
""" |
|
|
|
batch = clean_values.size(0) |
|
m = noisy_top_values.size(1) |
|
top_values_flat = noisy_top_values.flatten() |
|
threshold_positions_if_in = torch.arange(batch) * m + self.k |
|
threshold_if_in = torch.unsqueeze(torch.gather(top_values_flat, 0, threshold_positions_if_in.to(top_values_flat.device)), 1) |
|
|
|
if len(noisy_values.shape) == 3: |
|
threshold_if_in = threshold_if_in.unsqueeze(1) |
|
|
|
is_in = torch.gt(noisy_values, threshold_if_in) |
|
threshold_positions_if_out = threshold_positions_if_in - 1 |
|
threshold_if_out = torch.unsqueeze(torch.gather(top_values_flat,0 , threshold_positions_if_out.to(top_values_flat.device)), 1) |
|
if len(noisy_values.shape) == 3: |
|
threshold_if_out = threshold_if_out.unsqueeze(1) |
|
|
|
|
|
|
|
normal = Normal(self.mean.to(noise_stddev.device), self.std.to(noise_stddev.device)) |
|
prob_if_in = normal.cdf((clean_values - threshold_if_in)/noise_stddev) |
|
prob_if_out = normal.cdf((clean_values - threshold_if_out)/noise_stddev) |
|
prob = torch.where(is_in, prob_if_in, prob_if_out) |
|
return prob |
|
|
|
|
|
def random_k_gating(self, features, train): |
|
if train: |
|
idx = torch.randint(0, self.num_experts, 1) |
|
results = self.experts[idx](features) |
|
|
|
else: |
|
results = [] |
|
for i in range(self.num_experts): |
|
tmp = self.num_experts[i](features) |
|
results.append(tmp) |
|
|
|
results = torch.stack(results, dim=0).mean(dim=0) |
|
|
|
return results |
|
|
|
|
|
|
|
def noisy_top_k_gating(self, x, train, noise_epsilon=1e-2): |
|
"""Noisy top-k gating. |
|
See paper: https://arxiv.org/abs/1701.06538. |
|
Args: |
|
x: input Tensor with shape [batch_size, input_size] |
|
train: a boolean - we only add noise at training time. |
|
noise_epsilon: a float |
|
Returns: |
|
gates: a Tensor with shape [batch_size, num_experts] |
|
load: a Tensor with shape [num_experts] |
|
""" |
|
|
|
if self.gating == 'linear': |
|
clean_logits = x @ self.w_gate |
|
elif self.gating == 'cosine': |
|
clean_logits = self.w_gate(x) |
|
|
|
if self.noisy_gating and train: |
|
raw_noise_stddev = x @ self.w_noise |
|
noise_stddev = ((self.softplus(raw_noise_stddev) + noise_epsilon) * train) |
|
noisy_logits = clean_logits + ( torch.randn_like(clean_logits) * noise_stddev) |
|
logits = noisy_logits |
|
else: |
|
logits = clean_logits |
|
|
|
|
|
|
|
|
|
top_logits, top_indices = logits.topk(min(self.k + 1, self.num_experts), dim= -1) |
|
|
|
top_k_logits = top_logits[:, :self.k] if len(top_logits.shape) == 2 else top_logits[:, :, :self.k] |
|
top_k_indices = top_indices[:, :self.k] if len(top_indices.shape) == 2 else top_indices[:, :, :self.k] |
|
|
|
top_k_gates = self.softmax(top_k_logits) |
|
|
|
zeros = torch.zeros_like(logits, requires_grad=True) |
|
|
|
gates = zeros.scatter(-1, top_k_indices, top_k_gates) |
|
|
|
if self.noisy_gating and self.k < self.num_experts and train: |
|
load = (self._prob_in_top_k(clean_logits, noisy_logits, noise_stddev, top_logits)).sum(0) |
|
else: |
|
load = self._gates_to_load(gates) |
|
return gates, load |
|
|
|
|
|
def forward(self, x, frame_features, train=True, loss_coef=1e-2): |
|
"""Args: |
|
x: tensor shape [batch_size, input_size] |
|
train: a boolean scalar. |
|
loss_coef: a scalar - multiplier on load-balancing losses |
|
Returns: |
|
y: a tensor with shape [batch_size, output_size]. |
|
extra_training_loss: a scalar. This should be added into the overall |
|
training loss of the model. The backpropagation of this loss |
|
encourages all experts to be approximately equally used across a batch. |
|
""" |
|
|
|
if self.routing == 'random': |
|
loss = None |
|
load = None |
|
if train: |
|
gates = torch.zeros(x.shape[0], self.num_experts) |
|
random_idx = torch.randint(0, self.num_experts, (x.shape[0],)) |
|
gates[torch.arange(x.shape[0]), random_idx] = 1 |
|
gates = gates.to(x.device) |
|
dispatcher = SparseDispatcher(self.num_experts, gates) |
|
|
|
expert_inputs = dispatcher.dispatch(frame_features) |
|
gates = dispatcher.expert_to_gates() |
|
expert_outputs = [self.experts[i](expert_inputs[i]) for i in range(self.num_experts)] |
|
y = dispatcher.combine(expert_outputs) |
|
else: |
|
if self.infer_expert is None: |
|
weights = [self.experts[i].state_dict() for i in range(self.num_experts)] |
|
merge_weights = OrderedDict() |
|
for idx, it in enumerate(weights): |
|
for k,v in it.items(): |
|
merge_weights[k] = v / self.num_experts if idx==0 else merge_weights[k] + v / self.num_experts |
|
|
|
self.infer_expert = deepcopy(self.experts[0]) |
|
self.infer_expert.load_state_dict(merge_weights) |
|
|
|
y = self.infer_expert(frame_features) |
|
|
|
return y, loss, load |
|
|
|
else: |
|
if len(x.shape) == 1: |
|
x = x.unsqueeze(0) |
|
|
|
gates, load = self.noisy_top_k_gating(x, train) |
|
|
|
|
|
importance = gates.sum(dim=0) |
|
|
|
|
|
loss = self.cv_squared(importance) + self.cv_squared(load) |
|
loss *= loss_coef |
|
|
|
dispatcher = SparseDispatcher(self.num_experts, gates) |
|
|
|
expert_inputs = dispatcher.dispatch(frame_features) |
|
gates = dispatcher.expert_to_gates() |
|
expert_outputs = [self.experts[i](expert_inputs[i]) for i in range(self.num_experts)] |
|
y = dispatcher.combine(expert_outputs) |
|
return y, loss, load |
|
|
|
class CosineTopKGate(torch.nn.Module): |
|
def __init__(self, model_dim, num_global_experts, proj_dim=256, init_t=0.5): |
|
super(CosineTopKGate, self).__init__() |
|
self.temperature = torch.nn.Parameter(torch.log(torch.full([1], 1.0 / init_t)), requires_grad=True) |
|
self.cosine_projector = torch.nn.Linear(model_dim, proj_dim) |
|
self.sim_matrix = torch.nn.Parameter(torch.randn(size=(proj_dim, num_global_experts)), requires_grad=True) |
|
self.clamp_max = torch.log(torch.tensor(1. / 0.01)).item() |
|
torch.nn.init.normal_(self.sim_matrix, 0, 0.01) |
|
|
|
def forward(self, x): |
|
cosine_projector = self.cosine_projector |
|
sim_matrix = self.sim_matrix |
|
logits = torch.matmul(F.normalize(cosine_projector(x), dim=1), |
|
F.normalize(sim_matrix, dim=0)) |
|
logit_scale = torch.clamp(self.temperature, max=self.clamp_max).exp() |
|
logits = logits * logit_scale |
|
return logits |
|
|
|
''' |
|
model = MoE() |
|
|
|
inputs = torch.randn((32, 1, 768)) |
|
frame_features = torch.randn((32,10, 768)) |
|
|
|
model(inputs, frame_features) |
|
''' |
|
|