File size: 18,888 Bytes
2c3bb3b
890e483
 
39c567d
890e483
 
 
 
 
 
 
 
 
1829379
ee1a637
2c3bb3b
 
 
051d37f
 
890e483
39c567d
 
890e483
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85095bb
890e483
 
 
 
85095bb
0405ac0
85095bb
2c3bb3b
 
 
890e483
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee1a637
 
890e483
ee1a637
 
 
 
 
 
 
 
890e483
ee1a637
2c3bb3b
ee1a637
1620ce5
890e483
 
 
 
 
ee1a637
 
890e483
1620ce5
ee1a637
890e483
 
 
 
 
 
 
ee1a637
 
890e483
ee1a637
 
 
890e483
1620ce5
ee1a637
1620ce5
2c3bb3b
39c567d
ee1a637
 
2c3bb3b
ee1a637
1620ce5
 
2c3bb3b
1620ce5
85095bb
 
2c3bb3b
85095bb
1620ce5
39c567d
1620ce5
890e483
1620ce5
ee1a637
1620ce5
0405ac0
 
 
1620ce5
ee1a637
890e483
 
ee1a637
df985e4
890e483
1620ce5
ee1a637
890e483
ee1a637
 
 
 
 
 
0405ac0
 
 
39c567d
df985e4
 
0405ac0
1620ce5
ee1a637
 
 
1620ce5
ee1a637
 
890e483
0405ac0
 
 
1620ce5
0405ac0
 
1620ce5
ee1a637
1620ce5
ee1a637
890e483
 
1620ce5
39c567d
ee1a637
1620ce5
 
85095bb
1829379
1620ce5
ee1a637
1620ce5
 
 
 
 
 
 
 
ee1a637
 
1620ce5
39c567d
ee1a637
1620ce5
ee1a637
1620ce5
ee1a637
 
051d37f
39c567d
051d37f
 
 
 
 
 
 
 
 
1620ce5
 
39c567d
1620ce5
df985e4
 
 
 
 
 
1620ce5
 
ee1a637
39c567d
 
 
1620ce5
 
 
ee1a637
39c567d
1620ce5
 
39c567d
1620ce5
39c567d
ee1a637
 
 
 
1620ce5
39c567d
 
 
 
1620ce5
ee1a637
1620ce5
ee1a637
 
1620ce5
39c567d
ee1a637
 
 
 
 
 
1620ce5
39c567d
ee1a637
 
 
 
39c567d
 
1620ce5
39c567d
ee1a637
 
 
 
1829379
ee1a637
39c567d
ee1a637
 
1620ce5
ee1a637
39c567d
ee1a637
 
 
39c567d
1829379
 
ee1a637
39c567d
890e483
ee1a637
39c567d
ee1a637
1620ce5
ee1a637
890e483
85095bb
39c567d
85095bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
890e483
 
 
 
85095bb
 
 
 
 
 
 
 
890e483
 
1829379
39c567d
85095bb
 
1829379
 
 
2c3bb3b
 
39c567d
2c3bb3b
 
 
 
 
 
 
39c567d
2c3bb3b
 
 
39c567d
1829379
 
39c567d
1829379
890e483
1829379
 
890e483
1829379
39c567d
1829379
890e483
1829379
 
890e483
 
1829379
 
 
890e483
 
 
 
 
 
39c567d
890e483
 
 
39c567d
890e483
39c567d
1829379
 
 
 
 
 
 
 
 
890e483
1829379
890e483
 
 
1829379
 
890e483
 
39c567d
1829379
 
 
39c567d
1829379
 
 
 
890e483
 
39c567d
ee1a637
890e483
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
# -*- coding:utf-8 -*-
from __future__ import annotations
from typing import TYPE_CHECKING, Any, Callable, Dict, List, Tuple, Type
import logging
import json
import gradio as gr
# import openai
import os
import traceback
import requests
# import markdown
import csv
import mdtex2html
from pypinyin import lazy_pinyin
from presets import *
import tiktoken
from tqdm import tqdm
import colorama
from duckduckgo_search import ddg
import datetime

# logging.basicConfig(level=logging.INFO, format="%(asctime)s [%(levelname)s] [%(filename)s:%(lineno)d] %(message)s")

if TYPE_CHECKING:
    from typing import TypedDict

    class DataframeData(TypedDict):
        headers: List[str]
        data: List[List[str | int | bool]]

initial_prompt = "You are a helpful assistant."
API_URL = "https://api.openai.com/v1/chat/completions"
HISTORY_DIR = "history"
TEMPLATES_DIR = "templates"

def postprocess(
        self, y: List[Tuple[str | None, str | None]]
    ) -> List[Tuple[str | None, str | None]]:
        """
        Parameters:
            y: List of tuples representing the message and response pairs. Each message and response should be a string, which may be in Markdown format.
        Returns:
            List of tuples representing the message and response. Each message and response will be a string of HTML.
        """
        if y is None:
            return []
        for i, (message, response) in enumerate(y):
            y[i] = (
                # None if message is None else markdown.markdown(message),
                # None if response is None else markdown.markdown(response),
                None if message is None else message,
                None if response is None else mdtex2html.convert(response),
            )
        return y

def count_token(message):
    encoding = tiktoken.get_encoding("cl100k_base")
    input_str = f"role: {message['role']}, content: {message['content']}"
    length = len(encoding.encode(input_str))
    return length

def parse_text(text):
    lines = text.split("\n")
    lines = [line for line in lines if line != ""]
    count = 0
    for i, line in enumerate(lines):
        if "```" in line:
            count += 1
            items = line.split('`')
            if count % 2 == 1:
                lines[i] = f'<pre><code class="language-{items[-1]}">'
            else:
                lines[i] = f'<br></code></pre>'
        else:
            if i > 0:
                if count % 2 == 1:
                    line = line.replace("`", "\`")
                    line = line.replace("<", "&lt;")
                    line = line.replace(">", "&gt;")
                    line = line.replace(" ", "&nbsp;")
                    line = line.replace("*", "&ast;")
                    line = line.replace("_", "&lowbar;")
                    line = line.replace("-", "&#45;")
                    line = line.replace(".", "&#46;")
                    line = line.replace("!", "&#33;")
                    line = line.replace("(", "&#40;")
                    line = line.replace(")", "&#41;")
                    line = line.replace("$", "&#36;")
                lines[i] = "<br>"+line
    text = "".join(lines)
    return text

def construct_text(role, text):
    return {"role": role, "content": text}

def construct_user(text):
    return construct_text("user", text)

def construct_system(text):
    return construct_text("system", text)

def construct_assistant(text):
    return construct_text("assistant", text)

def construct_token_message(token, stream=False):
    return f"Token 计数: {token}"

def get_response(openai_api_key, system_prompt, history, temperature, top_p, stream, selected_model):
    headers = {
        "Content-Type": "application/json",
        "Authorization": f"Bearer {openai_api_key}"
    }

    history = [construct_system(system_prompt), *history]

    payload = {
        "model": selected_model,
        "messages": history,  # [{"role": "user", "content": f"{inputs}"}],
        "temperature": temperature,  # 1.0,
        "top_p": top_p,  # 1.0,
        "n": 1,
        "stream": stream,
        "presence_penalty": 0,
        "frequency_penalty": 0,
    }
    if stream:
        timeout = timeout_streaming
    else:
        timeout = timeout_all
    response = requests.post(API_URL, headers=headers, json=payload, stream=True, timeout=timeout)
    return response

def stream_predict(openai_api_key, system_prompt, history, inputs, chatbot, all_token_counts, top_p, temperature, selected_model):
    def get_return_value():
        return chatbot, history, status_text, all_token_counts

    logging.info("实时回答模式")
    partial_words = ""
    counter = 0
    status_text = "开始实时传输回答……"
    history.append(construct_user(inputs))
    history.append(construct_assistant(""))
    chatbot.append((parse_text(inputs), ""))
    user_token_count = 0
    if len(all_token_counts) == 0:
        system_prompt_token_count = count_token(construct_system(system_prompt))
        user_token_count = count_token(construct_user(inputs)) + system_prompt_token_count
    else:
        user_token_count = count_token(construct_user(inputs))
    all_token_counts.append(user_token_count)
    logging.info(f"输入token计数: {user_token_count}")
    yield get_return_value()
    try:
        response = get_response(openai_api_key, system_prompt, history, temperature, top_p, True, selected_model)
    except requests.exceptions.ConnectTimeout:
        status_text = standard_error_msg + connection_timeout_prompt + error_retrieve_prompt
        yield get_return_value()
        return
    except requests.exceptions.ReadTimeout:
        status_text = standard_error_msg + read_timeout_prompt + error_retrieve_prompt
        yield get_return_value()
        return

    yield get_return_value()
    error_json_str = ""

    for chunk in tqdm(response.iter_lines()):
        if counter == 0:
            counter += 1
            continue
        counter += 1
        # check whether each line is non-empty
        if chunk:
            chunk = chunk.decode()
            chunklength = len(chunk)
            try:
                chunk = json.loads(chunk[6:])
            except json.JSONDecodeError:
                logging.info(chunk)
                error_json_str += chunk
                status_text = f"JSON解析错误。请重置对话。收到的内容: {error_json_str}"
                yield get_return_value()
                continue
            # decode each line as response data is in bytes
            if chunklength > 6 and "delta" in chunk['choices'][0]:
                finish_reason = chunk['choices'][0]['finish_reason']
                status_text = construct_token_message(sum(all_token_counts), stream=True)
                if finish_reason == "stop":
                    yield get_return_value()
                    break
                try:
                    partial_words = partial_words + chunk['choices'][0]["delta"]["content"]
                except KeyError:
                    status_text = standard_error_msg + "API回复中找不到内容。很可能是Token计数达到上限了。请重置对话。当前Token计数: " + str(sum(all_token_counts))
                    yield get_return_value()
                    break
                history[-1] = construct_assistant(partial_words)
                chatbot[-1] = (parse_text(inputs), parse_text(partial_words))
                all_token_counts[-1] += 1
                yield get_return_value()


def predict_all(openai_api_key, system_prompt, history, inputs, chatbot, all_token_counts, top_p, temperature, selected_model):
    logging.info("一次性回答模式")
    history.append(construct_user(inputs))
    history.append(construct_assistant(""))
    chatbot.append((parse_text(inputs), ""))
    all_token_counts.append(count_token(construct_user(inputs)))
    try:
        response = get_response(openai_api_key, system_prompt, history, temperature, top_p, False, selected_model)
    except requests.exceptions.ConnectTimeout:
        status_text = standard_error_msg + connection_timeout_prompt + error_retrieve_prompt
        return chatbot, history, status_text, all_token_counts
    except requests.exceptions.ProxyError:
        status_text = standard_error_msg + proxy_error_prompt + error_retrieve_prompt
        return chatbot, history, status_text, all_token_counts
    except requests.exceptions.SSLError:
        status_text = standard_error_msg + ssl_error_prompt + error_retrieve_prompt
        return chatbot, history, status_text, all_token_counts
    response = json.loads(response.text)
    content = response["choices"][0]["message"]["content"]
    history[-1] = construct_assistant(content)
    chatbot[-1] = (parse_text(inputs), parse_text(content))
    total_token_count = response["usage"]["total_tokens"]
    all_token_counts[-1] = total_token_count - sum(all_token_counts)
    status_text = construct_token_message(total_token_count)
    return chatbot, history, status_text, all_token_counts


def predict(openai_api_key, system_prompt, history, inputs, chatbot, all_token_counts, top_p, temperature, stream=False, selected_model = MODELS[0], use_websearch_checkbox = False, should_check_token_count = True):  # repetition_penalty, top_k
    logging.info("输入为:" +colorama.Fore.BLUE + f"{inputs}" + colorama.Style.RESET_ALL)
    if use_websearch_checkbox:
        results = ddg(inputs, max_results=3)
        web_results = []
        for idx, result in enumerate(results):
            logging.info(f"搜索结果{idx + 1}{result}")
            web_results.append(f'[{idx+1}]"{result["body"]}"\nURL: {result["href"]}')
        web_results = "\n\n".join(web_results)
        today = datetime.datetime.today().strftime("%Y-%m-%d")
        inputs = websearch_prompt.replace("{current_date}", today).replace("{query}", inputs).replace("{web_results}", web_results)
    if len(openai_api_key) != 51:
        status_text = standard_error_msg + no_apikey_msg
        logging.info(status_text)
        chatbot.append((parse_text(inputs), ""))
        if len(history) == 0:
            history.append(construct_user(inputs))
            history.append("")
            all_token_counts.append(0)
        else:
            history[-2] = construct_user(inputs)
        yield chatbot, history, status_text, all_token_counts
        return
    if stream:
        yield chatbot, history, "开始生成回答……", all_token_counts
    if stream:
        logging.info("使用流式传输")
        iter = stream_predict(openai_api_key, system_prompt, history, inputs, chatbot, all_token_counts, top_p, temperature, selected_model)
        for chatbot, history, status_text, all_token_counts in iter:
            yield chatbot, history, status_text, all_token_counts
    else:
        logging.info("不使用流式传输")
        chatbot, history, status_text, all_token_counts = predict_all(openai_api_key, system_prompt, history, inputs, chatbot, all_token_counts, top_p, temperature, selected_model)
        yield chatbot, history, status_text, all_token_counts
    logging.info(f"传输完毕。当前token计数为{all_token_counts}")
    if len(history) > 1 and history[-1]['content'] != inputs:
        logging.info("回答为:" +colorama.Fore.BLUE + f"{history[-1]['content']}" + colorama.Style.RESET_ALL)
    if stream:
        max_token = max_token_streaming
    else:
        max_token = max_token_all
    if sum(all_token_counts) > max_token and should_check_token_count:
        status_text = f"精简token中{all_token_counts}/{max_token}"
        logging.info(status_text)
        yield chatbot, history, status_text, all_token_counts
        iter = reduce_token_size(openai_api_key, system_prompt, history, chatbot, all_token_counts, top_p, temperature, stream=False, selected_model=selected_model, hidden=True)
        for chatbot, history, status_text, all_token_counts in iter:
            status_text = f"Token 达到上限,已自动降低Token计数至 {status_text}"
            yield chatbot, history, status_text, all_token_counts


def retry(openai_api_key, system_prompt, history, chatbot, token_count, top_p, temperature, stream=False, selected_model = MODELS[0]):
    logging.info("重试中……")
    if len(history) == 0:
        yield chatbot, history, f"{standard_error_msg}上下文是空的", token_count
        return
    history.pop()
    inputs = history.pop()["content"]
    token_count.pop()
    iter = predict(openai_api_key, system_prompt, history, inputs, chatbot, token_count, top_p, temperature, stream=stream, selected_model=selected_model)
    logging.info("重试完毕")
    for x in iter:
        yield x


def reduce_token_size(openai_api_key, system_prompt, history, chatbot, token_count, top_p, temperature, stream=False, selected_model = MODELS[0], hidden=False):
    logging.info("开始减少token数量……")
    iter = predict(openai_api_key, system_prompt, history, summarize_prompt, chatbot, token_count, top_p, temperature, stream=stream, selected_model = selected_model, should_check_token_count=False)
    logging.info(f"chatbot: {chatbot}")
    for chatbot, history, status_text, previous_token_count in iter:
        history = history[-2:]
        token_count = previous_token_count[-1:]
        if hidden:
            chatbot.pop()
        yield chatbot, history, construct_token_message(sum(token_count), stream=stream), token_count
    logging.info("减少token数量完毕")


def delete_last_conversation(chatbot, history, previous_token_count):
    if len(chatbot) > 0 and standard_error_msg in chatbot[-1][1]:
        logging.info("由于包含报错信息,只删除chatbot记录")
        chatbot.pop()
        return chatbot, history
    if len(history) > 0:
        logging.info("删除了一组对话历史")
        history.pop()
        history.pop()
    if len(chatbot) > 0:
        logging.info("删除了一组chatbot对话")
        chatbot.pop()
    if len(previous_token_count) > 0:
        logging.info("删除了一组对话的token计数记录")
        previous_token_count.pop()
    return chatbot, history, previous_token_count, construct_token_message(sum(previous_token_count))


def save_file(filename, system, history, chatbot):
    logging.info("保存对话历史中……")
    os.makedirs(HISTORY_DIR, exist_ok=True)
    if filename.endswith(".json"):
        json_s = {"system": system, "history": history, "chatbot": chatbot}
        print(json_s)
        with open(os.path.join(HISTORY_DIR, filename), "w") as f:
            json.dump(json_s, f)
    elif filename.endswith(".md"):
        md_s = f"system: \n- {system} \n"
        for data in history:
            md_s += f"\n{data['role']}: \n- {data['content']} \n"
        with open(os.path.join(HISTORY_DIR, filename), "w", encoding="utf8") as f:
            f.write(md_s)
    logging.info("保存对话历史完毕")
    return os.path.join(HISTORY_DIR, filename)

def save_chat_history(filename, system, history, chatbot):
    if filename == "":
        return
    if not filename.endswith(".json"):
        filename += ".json"
    return save_file(filename, system, history, chatbot)

def export_markdown(filename, system, history, chatbot):
    if filename == "":
        return
    if not filename.endswith(".md"):
        filename += ".md"
    return save_file(filename, system, history, chatbot)


def load_chat_history(filename, system, history, chatbot):
    logging.info("加载对话历史中……")
    if type(filename) != str:
        filename = filename.name
    try:
        with open(os.path.join(HISTORY_DIR, filename), "r") as f:
            json_s = json.load(f)
        try:
            if type(json_s["history"][0]) == str:
                logging.info("历史记录格式为旧版,正在转换……")
                new_history = []
                for index, item in enumerate(json_s["history"]):
                    if index % 2 == 0:
                        new_history.append(construct_user(item))
                    else:
                        new_history.append(construct_assistant(item))
                json_s["history"] = new_history
                logging.info(new_history)
        except:
            # 没有对话历史
            pass
        logging.info("加载对话历史完毕")
        return filename, json_s["system"], json_s["history"], json_s["chatbot"]
    except FileNotFoundError:
        logging.info("没有找到对话历史文件,不执行任何操作")
        return filename, system, history, chatbot

def sorted_by_pinyin(list):
    return sorted(list, key=lambda char: lazy_pinyin(char)[0][0])

def get_file_names(dir, plain=False, filetypes=[".json"]):
    logging.info(f"获取文件名列表,目录为{dir},文件类型为{filetypes},是否为纯文本列表{plain}")
    files = []
    try:
        for type in filetypes:
            files += [f for f in os.listdir(dir) if f.endswith(type)]
    except FileNotFoundError:
        files = []
    files = sorted_by_pinyin(files)
    if files == []:
        files = [""]
    if plain:
        return files
    else:
        return gr.Dropdown.update(choices=files)

def get_history_names(plain=False):
    logging.info("获取历史记录文件名列表")
    return get_file_names(HISTORY_DIR, plain)

def load_template(filename, mode=0):
    logging.info(f"加载模板文件{filename},模式为{mode}(0为返回字典和下拉菜单,1为返回下拉菜单,2为返回字典)")
    lines = []
    logging.info("Loading template...")
    if filename.endswith(".json"):
        with open(os.path.join(TEMPLATES_DIR, filename), "r", encoding="utf8") as f:
            lines = json.load(f)
        lines = [[i["act"], i["prompt"]] for i in lines]
    else:
        with open(os.path.join(TEMPLATES_DIR, filename), "r", encoding="utf8") as csvfile:
            reader = csv.reader(csvfile)
            lines = list(reader)
        lines = lines[1:]
    if mode == 1:
        return sorted_by_pinyin([row[0] for row in lines])
    elif mode == 2:
        return {row[0]:row[1] for row in lines}
    else:
        choices = sorted_by_pinyin([row[0] for row in lines])
        return {row[0]:row[1] for row in lines}, gr.Dropdown.update(choices=choices, value=choices[0])

def get_template_names(plain=False):
    logging.info("获取模板文件名列表")
    return get_file_names(TEMPLATES_DIR, plain, filetypes=[".csv", "json"])

def get_template_content(templates, selection, original_system_prompt):
    logging.info(f"应用模板中,选择为{selection},原始系统提示为{original_system_prompt}")
    try:
        return templates[selection]
    except:
        return original_system_prompt

def reset_state():
    logging.info("重置状态")
    return [], [], [], construct_token_message(0)

def reset_textbox():
    return gr.update(value='')