import pinecone from colorama import Fore, Style from autogpt.llm_utils import create_embedding_with_ada from autogpt.logs import logger from autogpt.memory.base import MemoryProviderSingleton class PineconeMemory(MemoryProviderSingleton): def __init__(self, cfg): pinecone_api_key = cfg.pinecone_api_key pinecone_region = cfg.pinecone_region pinecone.init(api_key=pinecone_api_key, environment=pinecone_region) dimension = 1536 metric = "cosine" pod_type = "p1" table_name = "auto-gpt" # this assumes we don't start with memory. # for now this works. # we'll need a more complicated and robust system if we want to start with # memory. self.vec_num = 0 try: pinecone.whoami() except Exception as e: logger.typewriter_log( "FAILED TO CONNECT TO PINECONE", Fore.RED, Style.BRIGHT + str(e) + Style.RESET_ALL, ) logger.double_check( "Please ensure you have setup and configured Pinecone properly for use." + f"You can check out {Fore.CYAN + Style.BRIGHT}" "https://github.com/Torantulino/Auto-GPT#-pinecone-api-key-setup" f"{Style.RESET_ALL} to ensure you've set up everything correctly." ) exit(1) if table_name not in pinecone.list_indexes(): pinecone.create_index( table_name, dimension=dimension, metric=metric, pod_type=pod_type ) self.index = pinecone.Index(table_name) def add(self, data): vector = create_embedding_with_ada(data) # no metadata here. We may wish to change that long term. self.index.upsert([(str(self.vec_num), vector, {"raw_text": data})]) _text = f"Inserting data into memory at index: {self.vec_num}:\n data: {data}" self.vec_num += 1 return _text def get(self, data): return self.get_relevant(data, 1) def clear(self): self.index.delete(deleteAll=True) return "Obliviated" def get_relevant(self, data, num_relevant=5): """ Returns all the data in the memory that is relevant to the given data. :param data: The data to compare to. :param num_relevant: The number of relevant data to return. Defaults to 5 """ query_embedding = create_embedding_with_ada(data) results = self.index.query( query_embedding, top_k=num_relevant, include_metadata=True ) sorted_results = sorted(results.matches, key=lambda x: x.score) return [str(item["metadata"]["raw_text"]) for item in sorted_results] def get_stats(self): return self.index.describe_index_stats()