import gradio as gr # from sentence_transformers import SentenceTransformer, util # # model_name = 'nq-distilbert-base-v1' # bi_encoder = SentenceTransformer("./") # top_k = 5 # sentences = [ # "a happy person is a person how can do what he want with his money", # "That is a happy dog ho bark alot", # "Today is a sunny day so that a happy person can walk on the street" # ] # # vector embeddings created from dataset # corpus_embeddings = bi_encoder.encode(sentences, convert_to_tensor=True, show_progress_bar=True) # # def search(query): # # Encode the query using the bi-encoder and find potentially relevant passages # question_embedding = bi_encoder.encode(query) # hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=top_k) # hits = hits[0] # Get the hits for the first query # # # Output of top-k hits # print("Input question:", query) # print("Results") # for hit in hits: # print("\t{:.3f}\t{}".format(hit['score'], sentences[hit['corpus_id']])) # return hits # # def greet(name): # hittt = search(query=name) # x=dict() # for hit in hittt: # score=hit['score'] # sentence=sentences[hit['corpus_id']] # buffer={sentence:score} # x.update(buffer) # return x import dill def greet1(data): # pdf=data.get('pdf') print(data) x=eval(data) y=x.get('pdf') print(y) print(type(y)) print(type(dill.loads(eval(y)))) print(dill.loads(eval(y)).read(),"dah el data el file") return y iface = gr.Blocks() with iface: name = gr.Textbox(label="Name") output = gr.Textbox(label="Output Box") # greet_btn = gr.Button("Greet") # greet_btn.click(fn=greet, inputs=name, outputs=output, api_name="greet") greet1_btn = gr.Button("Greet1") greet1_btn.click(fn=greet1, inputs=name, outputs=output, api_name="testing") iface.launch()