File size: 15,625 Bytes
88b0dcb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
"""
@Date: 2021/07/17
@description:
"""
import sys
import os
import shutil
import argparse
import numpy as np
import json
import torch
import torch.nn.parallel
import torch.optim
import torch.multiprocessing as mp
import torch.utils.data
import torch.utils.data.distributed
import torch.cuda
from PIL import Image
from tqdm import tqdm
from torch.utils.tensorboard import SummaryWriter
from config.defaults import get_config, get_rank_config
from models.other.criterion import calc_criterion
from models.build import build_model
from models.other.init_env import init_env
from utils.logger import build_logger
from utils.misc import tensor2np_d, tensor2np
from dataset.build import build_loader
from evaluation.accuracy import calc_accuracy, show_heat_map, calc_ce, calc_pe, calc_rmse_delta_1, \
show_depth_normal_grad, calc_f1_score
from postprocessing.post_process import post_process
try:
from apex import amp
except ImportError:
amp = None
def parse_option():
debug = True if sys.gettrace() else False
parser = argparse.ArgumentParser(description='Panorama Layout Transformer training and evaluation script')
parser.add_argument('--cfg',
type=str,
metavar='FILE',
help='path to config file')
parser.add_argument('--mode',
type=str,
default='train',
choices=['train', 'val', 'test'],
help='train/val/test mode')
parser.add_argument('--val_name',
type=str,
choices=['val', 'test'],
help='val name')
parser.add_argument('--bs', type=int,
help='batch size')
parser.add_argument('--save_eval', action='store_true',
help='save eval result')
parser.add_argument('--post_processing', type=str,
choices=['manhattan', 'atalanta', 'manhattan_old'],
help='type of postprocessing ')
parser.add_argument('--need_cpe', action='store_true',
help='need to evaluate corner error and pixel error')
parser.add_argument('--need_f1', action='store_true',
help='need to evaluate f1-score of corners')
parser.add_argument('--need_rmse', action='store_true',
help='need to evaluate root mean squared error and delta error')
parser.add_argument('--force_cube', action='store_true',
help='force cube shape when eval')
parser.add_argument('--wall_num', type=int,
help='wall number')
args = parser.parse_args()
args.debug = debug
print("arguments:")
for arg in vars(args):
print(arg, ":", getattr(args, arg))
print("-" * 50)
return args
def main():
args = parse_option()
config = get_config(args)
if config.TRAIN.SCRATCH and os.path.exists(config.CKPT.DIR) and config.MODE == 'train':
print(f"Train from scratch, delete checkpoint dir: {config.CKPT.DIR}")
f = [int(f.split('_')[-1].split('.')[0]) for f in os.listdir(config.CKPT.DIR) if 'pkl' in f]
if len(f) > 0:
last_epoch = np.array(f).max()
if last_epoch > 10:
c = input(f"delete it (last_epoch: {last_epoch})?(Y/N)\n")
if c != 'y' and c != 'Y':
exit(0)
shutil.rmtree(config.CKPT.DIR, ignore_errors=True)
os.makedirs(config.CKPT.DIR, exist_ok=True)
os.makedirs(config.CKPT.RESULT_DIR, exist_ok=True)
os.makedirs(config.LOGGER.DIR, exist_ok=True)
if ':' in config.TRAIN.DEVICE:
nprocs = len(config.TRAIN.DEVICE.split(':')[-1].split(','))
if 'cuda' in config.TRAIN.DEVICE:
if not torch.cuda.is_available():
print(f"Cuda is not available(config is: {config.TRAIN.DEVICE}), will use cpu ...")
config.defrost()
config.TRAIN.DEVICE = "cpu"
config.freeze()
nprocs = 1
if config.MODE == 'train':
with open(os.path.join(config.CKPT.DIR, "config.yaml"), "w") as f:
f.write(config.dump(allow_unicode=True))
if config.TRAIN.DEVICE == 'cpu' or nprocs < 2:
print(f"Use single process, device:{config.TRAIN.DEVICE}")
main_worker(0, config, 1)
else:
print(f"Use {nprocs} processes ...")
mp.spawn(main_worker, nprocs=nprocs, args=(config, nprocs), join=True)
def main_worker(local_rank, cfg, world_size):
config = get_rank_config(cfg, local_rank, world_size)
logger = build_logger(config)
writer = SummaryWriter(config.CKPT.DIR)
logger.info(f"Comment: {config.COMMENT}")
cur_pid = os.getpid()
logger.info(f"Current process id: {cur_pid}")
torch.hub._hub_dir = config.CKPT.PYTORCH
logger.info(f"Pytorch hub dir: {torch.hub._hub_dir}")
init_env(config.SEED, config.TRAIN.DETERMINISTIC, config.DATA.NUM_WORKERS)
model, optimizer, criterion, scheduler = build_model(config, logger)
train_data_loader, val_data_loader = build_loader(config, logger)
if 'cuda' in config.TRAIN.DEVICE:
torch.cuda.set_device(config.TRAIN.DEVICE)
if config.MODE == 'train':
train(model, train_data_loader, val_data_loader, optimizer, criterion, config, logger, writer, scheduler)
else:
iou_results, other_results = val_an_epoch(model, val_data_loader,
criterion, config, logger, writer=None,
epoch=config.TRAIN.START_EPOCH)
results = dict(iou_results, **other_results)
if config.SAVE_EVAL:
save_path = os.path.join(config.CKPT.RESULT_DIR, f"result.json")
with open(save_path, 'w+') as f:
json.dump(results, f, indent=4)
def save(model, optimizer, epoch, iou_d, logger, writer, config):
model.save(optimizer, epoch, accuracy=iou_d['full_3d'], logger=logger, acc_d=iou_d, config=config)
for k in model.acc_d:
writer.add_scalar(f"BestACC/{k}", model.acc_d[k]['acc'], epoch)
def train(model, train_data_loader, val_data_loader, optimizer, criterion, config, logger, writer, scheduler):
for epoch in range(config.TRAIN.START_EPOCH, config.TRAIN.EPOCHS):
logger.info("=" * 200)
train_an_epoch(model, train_data_loader, optimizer, criterion, config, logger, writer, epoch)
epoch_iou_d, _ = val_an_epoch(model, val_data_loader, criterion, config, logger, writer, epoch)
if config.LOCAL_RANK == 0:
ddp = config.WORLD_SIZE > 1
save(model.module if ddp else model, optimizer, epoch, epoch_iou_d, logger, writer, config)
if scheduler is not None:
if scheduler.min_lr is not None and optimizer.param_groups[0]['lr'] <= scheduler.min_lr:
continue
scheduler.step()
writer.close()
def train_an_epoch(model, train_data_loader, optimizer, criterion, config, logger, writer, epoch=0):
logger.info(f'Start Train Epoch {epoch}/{config.TRAIN.EPOCHS - 1}')
model.train()
if len(config.MODEL.FINE_TUNE) > 0:
model.feature_extractor.eval()
optimizer.zero_grad()
data_len = len(train_data_loader)
start_i = data_len * epoch * config.WORLD_SIZE
bar = enumerate(train_data_loader)
if config.LOCAL_RANK == 0 and config.SHOW_BAR:
bar = tqdm(bar, total=data_len, ncols=200)
device = config.TRAIN.DEVICE
epoch_loss_d = {}
for i, gt in bar:
imgs = gt['image'].to(device, non_blocking=True)
gt['depth'] = gt['depth'].to(device, non_blocking=True)
gt['ratio'] = gt['ratio'].to(device, non_blocking=True)
if 'corner_heat_map' in gt:
gt['corner_heat_map'] = gt['corner_heat_map'].to(device, non_blocking=True)
if config.AMP_OPT_LEVEL != "O0" and 'cuda' in device:
imgs = imgs.type(torch.float16)
gt['depth'] = gt['depth'].type(torch.float16)
gt['ratio'] = gt['ratio'].type(torch.float16)
dt = model(imgs)
loss, batch_loss_d, epoch_loss_d = calc_criterion(criterion, gt, dt, epoch_loss_d)
if config.LOCAL_RANK == 0 and config.SHOW_BAR:
bar.set_postfix(batch_loss_d)
optimizer.zero_grad()
if config.AMP_OPT_LEVEL != "O0" and 'cuda' in device:
with amp.scale_loss(loss, optimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
optimizer.step()
global_step = start_i + i * config.WORLD_SIZE + config.LOCAL_RANK
for key, val in batch_loss_d.items():
writer.add_scalar(f'TrainBatchLoss/{key}', val, global_step)
if config.LOCAL_RANK != 0:
return
epoch_loss_d = dict(zip(epoch_loss_d.keys(), [np.array(epoch_loss_d[k]).mean() for k in epoch_loss_d.keys()]))
s = 'TrainEpochLoss: '
for key, val in epoch_loss_d.items():
writer.add_scalar(f'TrainEpochLoss/{key}', val, epoch)
s += f" {key}={val}"
logger.info(s)
writer.add_scalar('LearningRate', optimizer.param_groups[0]['lr'], epoch)
logger.info(f"LearningRate: {optimizer.param_groups[0]['lr']}")
@torch.no_grad()
def val_an_epoch(model, val_data_loader, criterion, config, logger, writer, epoch=0):
model.eval()
logger.info(f'Start Validate Epoch {epoch}/{config.TRAIN.EPOCHS - 1}')
data_len = len(val_data_loader)
start_i = data_len * epoch * config.WORLD_SIZE
bar = enumerate(val_data_loader)
if config.LOCAL_RANK == 0 and config.SHOW_BAR:
bar = tqdm(bar, total=data_len, ncols=200)
device = config.TRAIN.DEVICE
epoch_loss_d = {}
epoch_iou_d = {
'visible_2d': [],
'visible_3d': [],
'full_2d': [],
'full_3d': [],
'height': []
}
epoch_other_d = {
'ce': [],
'pe': [],
'f1': [],
'precision': [],
'recall': [],
'rmse': [],
'delta_1': []
}
show_index = np.random.randint(0, data_len)
for i, gt in bar:
imgs = gt['image'].to(device, non_blocking=True)
gt['depth'] = gt['depth'].to(device, non_blocking=True)
gt['ratio'] = gt['ratio'].to(device, non_blocking=True)
if 'corner_heat_map' in gt:
gt['corner_heat_map'] = gt['corner_heat_map'].to(device, non_blocking=True)
dt = model(imgs)
vis_w = config.TRAIN.VIS_WEIGHT
visualization = False # (config.LOCAL_RANK == 0 and i == show_index) or config.SAVE_EVAL
loss, batch_loss_d, epoch_loss_d = calc_criterion(criterion, gt, dt, epoch_loss_d)
if config.EVAL.POST_PROCESSING is not None:
depth = tensor2np(dt['depth'])
dt['processed_xyz'] = post_process(depth, type_name=config.EVAL.POST_PROCESSING,
need_cube=config.EVAL.FORCE_CUBE)
if config.EVAL.FORCE_CUBE and config.EVAL.NEED_CPE:
ce = calc_ce(tensor2np_d(dt), tensor2np_d(gt))
pe = calc_pe(tensor2np_d(dt), tensor2np_d(gt))
epoch_other_d['ce'].append(ce)
epoch_other_d['pe'].append(pe)
if config.EVAL.NEED_F1:
f1, precision, recall = calc_f1_score(tensor2np_d(dt), tensor2np_d(gt))
epoch_other_d['f1'].append(f1)
epoch_other_d['precision'].append(precision)
epoch_other_d['recall'].append(recall)
if config.EVAL.NEED_RMSE:
rmse, delta_1 = calc_rmse_delta_1(tensor2np_d(dt), tensor2np_d(gt))
epoch_other_d['rmse'].append(rmse)
epoch_other_d['delta_1'].append(delta_1)
visb_iou, full_iou, iou_height, pano_bds, full_iou_2ds = calc_accuracy(tensor2np_d(dt), tensor2np_d(gt),
visualization, h=vis_w // 2)
epoch_iou_d['visible_2d'].append(visb_iou[0])
epoch_iou_d['visible_3d'].append(visb_iou[1])
epoch_iou_d['full_2d'].append(full_iou[0])
epoch_iou_d['full_3d'].append(full_iou[1])
epoch_iou_d['height'].append(iou_height)
if config.LOCAL_RANK == 0 and config.SHOW_BAR:
bar.set_postfix(batch_loss_d)
global_step = start_i + i * config.WORLD_SIZE + config.LOCAL_RANK
if writer:
for key, val in batch_loss_d.items():
writer.add_scalar(f'ValBatchLoss/{key}', val, global_step)
if not visualization:
continue
gt_grad_imgs, dt_grad_imgs = show_depth_normal_grad(dt, gt, device, vis_w)
dt_heat_map_imgs = None
gt_heat_map_imgs = None
if 'corner_heat_map' in gt:
dt_heat_map_imgs, gt_heat_map_imgs = show_heat_map(dt, gt, vis_w)
if config.TRAIN.VIS_MERGE or config.SAVE_EVAL:
imgs = []
for j in range(len(pano_bds)):
# floorplan = np.concatenate([visb_iou[2][j], full_iou[2][j]], axis=-1)
floorplan = full_iou[2][j]
margin_w = int(floorplan.shape[-1] * (60/512))
floorplan = floorplan[:, :, margin_w:-margin_w]
grad_h = dt_grad_imgs[0].shape[1]
vis_merge = [
gt_grad_imgs[j],
pano_bds[j][:, grad_h:-grad_h],
dt_grad_imgs[j]
]
if 'corner_heat_map' in gt:
vis_merge = [dt_heat_map_imgs[j], gt_heat_map_imgs[j]] + vis_merge
img = np.concatenate(vis_merge, axis=-2)
img = np.concatenate([img, ], axis=-1)
# img = gt_grad_imgs[j]
imgs.append(img)
if writer:
writer.add_images('VIS/Merge', np.array(imgs), global_step)
if config.SAVE_EVAL:
for k in range(len(imgs)):
img = imgs[k] * 255.0
save_path = os.path.join(config.CKPT.RESULT_DIR, f"{gt['id'][k]}_{full_iou_2ds[k]:.5f}.png")
Image.fromarray(img.transpose(1, 2, 0).astype(np.uint8)).save(save_path)
elif writer:
writer.add_images('IoU/Visible_Floorplan', visb_iou[2], global_step)
writer.add_images('IoU/Full_Floorplan', full_iou[2], global_step)
writer.add_images('IoU/Boundary', pano_bds, global_step)
writer.add_images('Grad/gt', gt_grad_imgs, global_step)
writer.add_images('Grad/dt', dt_grad_imgs, global_step)
if config.LOCAL_RANK != 0:
return
epoch_loss_d = dict(zip(epoch_loss_d.keys(), [np.array(epoch_loss_d[k]).mean() for k in epoch_loss_d.keys()]))
s = 'ValEpochLoss: '
for key, val in epoch_loss_d.items():
if writer:
writer.add_scalar(f'ValEpochLoss/{key}', val, epoch)
s += f" {key}={val}"
logger.info(s)
epoch_iou_d = dict(zip(epoch_iou_d.keys(), [np.array(epoch_iou_d[k]).mean() for k in epoch_iou_d.keys()]))
s = 'ValEpochIoU: '
for key, val in epoch_iou_d.items():
if writer:
writer.add_scalar(f'ValEpochIoU/{key}', val, epoch)
s += f" {key}={val}"
logger.info(s)
epoch_other_d = dict(zip(epoch_other_d.keys(),
[np.array(epoch_other_d[k]).mean() if len(epoch_other_d[k]) > 0 else 0 for k in
epoch_other_d.keys()]))
logger.info(f'other acc: {epoch_other_d}')
return epoch_iou_d, epoch_other_d
if __name__ == '__main__':
main()
|