mirco
commited on
Commit
•
6cf215c
1
Parent(s):
a1d16fe
cleaned inference hyparam file
Browse files- hyperparams.yaml +22 -141
- hyperparams_train.yaml +184 -0
hyperparams.yaml
CHANGED
@@ -1,114 +1,21 @@
|
|
1 |
-
# Generated 2021-05-22 from:
|
2 |
-
# /home/mila/s/subakany/speechbrain_new/recipes/WSJ0Mix/separation/yamls/sepformer-whamr-16k.yaml
|
3 |
-
# yamllint disable
|
4 |
# ################################
|
5 |
-
# Model:
|
6 |
# https://arxiv.org/abs/2010.13154
|
7 |
-
#
|
8 |
-
# Dataset :
|
9 |
-
#
|
10 |
-
# Basic parameters
|
11 |
-
# Seed needs to be set at top of yaml, before objects with parameters are made
|
12 |
-
#
|
13 |
-
seed: 1234
|
14 |
-
__set_seed: !apply:torch.manual_seed [1234]
|
15 |
-
|
16 |
-
# Data params
|
17 |
-
|
18 |
-
# the data folder for the wham dataset
|
19 |
-
# data_folder needs to follow the format: /yourpath/whamr.
|
20 |
-
# make sure to use the name whamr at your top folder for the dataset!
|
21 |
-
data_folder: /network/tmp1/subakany/whamr_16k
|
22 |
|
23 |
-
# the path for wsj0/si_tr_s/ folder -- only needed if dynamic mixing is used
|
24 |
-
# e.g. /yourpath/wsj0-processed/si_tr_s/
|
25 |
-
# you need to convert the original wsj0 to 8k
|
26 |
-
# you can do this conversion with the script ../meta/preprocess_dynamic_mixing.py
|
27 |
-
wsj0_tr: /yourpath/wsj0-processed/si_tr_s/
|
28 |
|
29 |
-
|
30 |
-
output_folder: results/sepformer-whamr-randomreverb-16k/1234
|
31 |
-
train_log: results/sepformer-whamr-randomreverb-16k/1234/train_log.txt
|
32 |
-
save_folder: results/sepformer-whamr-randomreverb-16k/1234/save
|
33 |
-
|
34 |
-
# the file names should start with whamr instead of whamorg
|
35 |
-
train_data: results/sepformer-whamr-randomreverb-16k/1234/save/whamr_tr.csv
|
36 |
-
valid_data: results/sepformer-whamr-randomreverb-16k/1234/save/whamr_cv.csv
|
37 |
-
test_data: results/sepformer-whamr-randomreverb-16k/1234/save/whamr_tt.csv
|
38 |
-
skip_prep: false
|
39 |
-
|
40 |
-
# Experiment params
|
41 |
-
auto_mix_prec: false # Set it to True for mixed precision
|
42 |
-
test_only: true
|
43 |
-
num_spks: 2 # set to 3 for wsj0-3mix
|
44 |
-
progressbar: true
|
45 |
-
save_audio: false # Save estimated sources on disk
|
46 |
sample_rate: 16000
|
47 |
-
|
48 |
-
# Training parameters
|
49 |
-
N_epochs: 200
|
50 |
-
batch_size: 1
|
51 |
-
lr: 0.00015
|
52 |
-
clip_grad_norm: 5
|
53 |
-
loss_upper_lim: 999999 # this is the upper limit for an acceptable loss
|
54 |
-
# if True, the training sequences are cut to a specified length
|
55 |
-
limit_training_signal_len: true
|
56 |
-
# this is the length of sequences if we choose to limit
|
57 |
-
# the signal length of training sequences
|
58 |
-
training_signal_len: 64000
|
59 |
-
|
60 |
-
# Set it to True to dynamically create mixtures at training time
|
61 |
-
dynamic_mixing: false
|
62 |
-
|
63 |
-
# Parameters for data augmentation
|
64 |
-
|
65 |
-
# rir_path variable points to the directory of the room impulse responses
|
66 |
-
# e.g. /miniscratch/subakany/rir_wavs
|
67 |
-
# If the path does not exist, it is created automatically.
|
68 |
-
rir_path: /network/tmp1/subakany/rir_wavs_16k
|
69 |
-
|
70 |
-
use_wavedrop: false
|
71 |
-
use_speedperturb: true
|
72 |
-
use_speedperturb_sameforeachsource: false
|
73 |
-
use_rand_shift: false
|
74 |
-
min_shift: -8000
|
75 |
-
max_shift: 8000
|
76 |
-
|
77 |
-
speedperturb: !new:speechbrain.lobes.augment.TimeDomainSpecAugment
|
78 |
-
perturb_prob: 1.0
|
79 |
-
drop_freq_prob: 0.0
|
80 |
-
drop_chunk_prob: 0.0
|
81 |
-
sample_rate: 16000
|
82 |
-
speeds: [95, 100, 105]
|
83 |
-
|
84 |
-
wavedrop: !new:speechbrain.lobes.augment.TimeDomainSpecAugment
|
85 |
-
perturb_prob: 0.0
|
86 |
-
drop_freq_prob: 1.0
|
87 |
-
drop_chunk_prob: 1.0
|
88 |
-
sample_rate: 16000
|
89 |
-
|
90 |
-
# loss thresholding -- this thresholds the training loss
|
91 |
-
threshold_byloss: true
|
92 |
-
threshold: -30
|
93 |
-
|
94 |
-
# Encoder parameters
|
95 |
-
N_encoder_out: 256
|
96 |
-
out_channels: 256
|
97 |
-
kernel_size: 16
|
98 |
-
kernel_stride: 8
|
99 |
-
|
100 |
-
# Dataloader options
|
101 |
-
dataloader_opts:
|
102 |
-
batch_size: 1
|
103 |
-
num_workers: 3
|
104 |
|
105 |
# Specifying the network
|
106 |
-
Encoder:
|
107 |
kernel_size: 16
|
108 |
out_channels: 256
|
109 |
|
110 |
-
|
111 |
-
SBtfintra: &id001 !new:speechbrain.lobes.models.dual_path.SBTransformerBlock
|
112 |
num_layers: 8
|
113 |
d_model: 256
|
114 |
nhead: 8
|
@@ -117,7 +24,7 @@ SBtfintra: &id001 !new:speechbrain.lobes.models.dual_path.SBTransformerBlock
|
|
117 |
use_positional_encoding: true
|
118 |
norm_before: true
|
119 |
|
120 |
-
SBtfinter:
|
121 |
num_layers: 8
|
122 |
d_model: 256
|
123 |
nhead: 8
|
@@ -126,59 +33,33 @@ SBtfinter: &id002 !new:speechbrain.lobes.models.dual_path.SBTransformerBlock
|
|
126 |
use_positional_encoding: true
|
127 |
norm_before: true
|
128 |
|
129 |
-
MaskNet:
|
130 |
-
|
131 |
-
num_spks: 2
|
132 |
in_channels: 256
|
133 |
out_channels: 256
|
134 |
num_layers: 2
|
135 |
K: 250
|
136 |
-
intra_model:
|
137 |
-
inter_model:
|
138 |
norm: ln
|
139 |
linear_layer_after_inter_intra: false
|
140 |
skip_around_intra: true
|
141 |
|
142 |
-
Decoder:
|
143 |
in_channels: 256
|
144 |
out_channels: 1
|
145 |
kernel_size: 16
|
146 |
stride: 8
|
147 |
bias: false
|
148 |
|
149 |
-
optimizer: !name:torch.optim.Adam
|
150 |
-
lr: 0.00015
|
151 |
-
weight_decay: 0
|
152 |
-
|
153 |
-
loss: !name:speechbrain.nnet.losses.get_si_snr_with_pitwrapper
|
154 |
-
|
155 |
-
lr_scheduler: &id007 !new:speechbrain.nnet.schedulers.ReduceLROnPlateau
|
156 |
-
|
157 |
-
factor: 0.5
|
158 |
-
patience: 2
|
159 |
-
dont_halve_until_epoch: 85
|
160 |
-
|
161 |
-
epoch_counter: &id006 !new:speechbrain.utils.epoch_loop.EpochCounter
|
162 |
-
limit: 200
|
163 |
-
|
164 |
modules:
|
165 |
-
encoder:
|
166 |
-
decoder:
|
167 |
-
masknet:
|
168 |
-
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
|
169 |
-
checkpoints_dir: results/sepformer-whamr-randomreverb-16k/1234/save
|
170 |
-
recoverables:
|
171 |
-
encoder: *id003
|
172 |
-
decoder: *id004
|
173 |
-
masknet: *id005
|
174 |
-
counter: *id006
|
175 |
-
lr_scheduler: *id007
|
176 |
-
train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
|
177 |
-
save_file: results/sepformer-whamr-randomreverb-16k/1234/train_log.txt
|
178 |
-
|
179 |
|
180 |
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
|
|
|
|
|
|
|
|
|
1 |
# ################################
|
2 |
+
# Model: Inference for source separation with SepFormer
|
3 |
# https://arxiv.org/abs/2010.13154
|
4 |
+
# Generated from speechbrain/recipes/WSJ0Mix/separation/train/hparams/sepformer-whamr-16khz.yaml
|
5 |
+
# Dataset : Whamr-16kHz
|
6 |
+
# ###############################
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
# Parameters
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
sample_rate: 16000
|
11 |
+
num_spks: 2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
|
13 |
# Specifying the network
|
14 |
+
Encoder: !new:speechbrain.lobes.models.dual_path.Encoder
|
15 |
kernel_size: 16
|
16 |
out_channels: 256
|
17 |
|
18 |
+
SBtfintra: !new:speechbrain.lobes.models.dual_path.SBTransformerBlock
|
|
|
19 |
num_layers: 8
|
20 |
d_model: 256
|
21 |
nhead: 8
|
|
|
24 |
use_positional_encoding: true
|
25 |
norm_before: true
|
26 |
|
27 |
+
SBtfinter: !new:speechbrain.lobes.models.dual_path.SBTransformerBlock
|
28 |
num_layers: 8
|
29 |
d_model: 256
|
30 |
nhead: 8
|
|
|
33 |
use_positional_encoding: true
|
34 |
norm_before: true
|
35 |
|
36 |
+
MaskNet: !new:speechbrain.lobes.models.dual_path.Dual_Path_Model
|
37 |
+
num_spks: !ref <num_spks>
|
|
|
38 |
in_channels: 256
|
39 |
out_channels: 256
|
40 |
num_layers: 2
|
41 |
K: 250
|
42 |
+
intra_model: !ref <SBtfintra>
|
43 |
+
inter_model: !ref <SBtfinter>
|
44 |
norm: ln
|
45 |
linear_layer_after_inter_intra: false
|
46 |
skip_around_intra: true
|
47 |
|
48 |
+
Decoder: !new:speechbrain.lobes.models.dual_path.Decoder
|
49 |
in_channels: 256
|
50 |
out_channels: 1
|
51 |
kernel_size: 16
|
52 |
stride: 8
|
53 |
bias: false
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
modules:
|
56 |
+
encoder: !ref <Encoder>
|
57 |
+
decoder: !ref <Decoder>
|
58 |
+
masknet: !ref <MaskNet>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
|
61 |
+
loadables:
|
62 |
+
masknet: !ref <MaskNet>
|
63 |
+
encoder: !ref <Encoder>
|
64 |
+
decoder: !ref <Decoder>
|
65 |
+
|
hyperparams_train.yaml
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generated 2021-05-22 from:
|
2 |
+
# /home/mila/s/subakany/speechbrain_new/recipes/WSJ0Mix/separation/yamls/sepformer-whamr-16k.yaml
|
3 |
+
# yamllint disable
|
4 |
+
# ################################
|
5 |
+
# Model: SepFormer for source separation
|
6 |
+
# https://arxiv.org/abs/2010.13154
|
7 |
+
#
|
8 |
+
# Dataset : WSJ0-2mix and WSJ0-3mix
|
9 |
+
# ################################
|
10 |
+
# Basic parameters
|
11 |
+
# Seed needs to be set at top of yaml, before objects with parameters are made
|
12 |
+
#
|
13 |
+
seed: 1234
|
14 |
+
__set_seed: !apply:torch.manual_seed [1234]
|
15 |
+
|
16 |
+
# Data params
|
17 |
+
|
18 |
+
# the data folder for the wham dataset
|
19 |
+
# data_folder needs to follow the format: /yourpath/whamr.
|
20 |
+
# make sure to use the name whamr at your top folder for the dataset!
|
21 |
+
data_folder: /network/tmp1/subakany/whamr_16k
|
22 |
+
|
23 |
+
# the path for wsj0/si_tr_s/ folder -- only needed if dynamic mixing is used
|
24 |
+
# e.g. /yourpath/wsj0-processed/si_tr_s/
|
25 |
+
# you need to convert the original wsj0 to 8k
|
26 |
+
# you can do this conversion with the script ../meta/preprocess_dynamic_mixing.py
|
27 |
+
wsj0_tr: /yourpath/wsj0-processed/si_tr_s/
|
28 |
+
|
29 |
+
experiment_name: sepformer-whamr-randomreverb-16k
|
30 |
+
output_folder: results/sepformer-whamr-randomreverb-16k/1234
|
31 |
+
train_log: results/sepformer-whamr-randomreverb-16k/1234/train_log.txt
|
32 |
+
save_folder: results/sepformer-whamr-randomreverb-16k/1234/save
|
33 |
+
|
34 |
+
# the file names should start with whamr instead of whamorg
|
35 |
+
train_data: results/sepformer-whamr-randomreverb-16k/1234/save/whamr_tr.csv
|
36 |
+
valid_data: results/sepformer-whamr-randomreverb-16k/1234/save/whamr_cv.csv
|
37 |
+
test_data: results/sepformer-whamr-randomreverb-16k/1234/save/whamr_tt.csv
|
38 |
+
skip_prep: false
|
39 |
+
|
40 |
+
# Experiment params
|
41 |
+
auto_mix_prec: false # Set it to True for mixed precision
|
42 |
+
test_only: true
|
43 |
+
num_spks: 2 # set to 3 for wsj0-3mix
|
44 |
+
progressbar: true
|
45 |
+
save_audio: false # Save estimated sources on disk
|
46 |
+
sample_rate: 16000
|
47 |
+
|
48 |
+
# Training parameters
|
49 |
+
N_epochs: 200
|
50 |
+
batch_size: 1
|
51 |
+
lr: 0.00015
|
52 |
+
clip_grad_norm: 5
|
53 |
+
loss_upper_lim: 999999 # this is the upper limit for an acceptable loss
|
54 |
+
# if True, the training sequences are cut to a specified length
|
55 |
+
limit_training_signal_len: true
|
56 |
+
# this is the length of sequences if we choose to limit
|
57 |
+
# the signal length of training sequences
|
58 |
+
training_signal_len: 64000
|
59 |
+
|
60 |
+
# Set it to True to dynamically create mixtures at training time
|
61 |
+
dynamic_mixing: false
|
62 |
+
|
63 |
+
# Parameters for data augmentation
|
64 |
+
|
65 |
+
# rir_path variable points to the directory of the room impulse responses
|
66 |
+
# e.g. /miniscratch/subakany/rir_wavs
|
67 |
+
# If the path does not exist, it is created automatically.
|
68 |
+
rir_path: /network/tmp1/subakany/rir_wavs_16k
|
69 |
+
|
70 |
+
use_wavedrop: false
|
71 |
+
use_speedperturb: true
|
72 |
+
use_speedperturb_sameforeachsource: false
|
73 |
+
use_rand_shift: false
|
74 |
+
min_shift: -8000
|
75 |
+
max_shift: 8000
|
76 |
+
|
77 |
+
speedperturb: !new:speechbrain.lobes.augment.TimeDomainSpecAugment
|
78 |
+
perturb_prob: 1.0
|
79 |
+
drop_freq_prob: 0.0
|
80 |
+
drop_chunk_prob: 0.0
|
81 |
+
sample_rate: 16000
|
82 |
+
speeds: [95, 100, 105]
|
83 |
+
|
84 |
+
wavedrop: !new:speechbrain.lobes.augment.TimeDomainSpecAugment
|
85 |
+
perturb_prob: 0.0
|
86 |
+
drop_freq_prob: 1.0
|
87 |
+
drop_chunk_prob: 1.0
|
88 |
+
sample_rate: 16000
|
89 |
+
|
90 |
+
# loss thresholding -- this thresholds the training loss
|
91 |
+
threshold_byloss: true
|
92 |
+
threshold: -30
|
93 |
+
|
94 |
+
# Encoder parameters
|
95 |
+
N_encoder_out: 256
|
96 |
+
out_channels: 256
|
97 |
+
kernel_size: 16
|
98 |
+
kernel_stride: 8
|
99 |
+
|
100 |
+
# Dataloader options
|
101 |
+
dataloader_opts:
|
102 |
+
batch_size: 1
|
103 |
+
num_workers: 3
|
104 |
+
|
105 |
+
# Specifying the network
|
106 |
+
Encoder: &id003 !new:speechbrain.lobes.models.dual_path.Encoder
|
107 |
+
kernel_size: 16
|
108 |
+
out_channels: 256
|
109 |
+
|
110 |
+
|
111 |
+
SBtfintra: &id001 !new:speechbrain.lobes.models.dual_path.SBTransformerBlock
|
112 |
+
num_layers: 8
|
113 |
+
d_model: 256
|
114 |
+
nhead: 8
|
115 |
+
d_ffn: 1024
|
116 |
+
dropout: 0
|
117 |
+
use_positional_encoding: true
|
118 |
+
norm_before: true
|
119 |
+
|
120 |
+
SBtfinter: &id002 !new:speechbrain.lobes.models.dual_path.SBTransformerBlock
|
121 |
+
num_layers: 8
|
122 |
+
d_model: 256
|
123 |
+
nhead: 8
|
124 |
+
d_ffn: 1024
|
125 |
+
dropout: 0
|
126 |
+
use_positional_encoding: true
|
127 |
+
norm_before: true
|
128 |
+
|
129 |
+
MaskNet: &id005 !new:speechbrain.lobes.models.dual_path.Dual_Path_Model
|
130 |
+
|
131 |
+
num_spks: 2
|
132 |
+
in_channels: 256
|
133 |
+
out_channels: 256
|
134 |
+
num_layers: 2
|
135 |
+
K: 250
|
136 |
+
intra_model: *id001
|
137 |
+
inter_model: *id002
|
138 |
+
norm: ln
|
139 |
+
linear_layer_after_inter_intra: false
|
140 |
+
skip_around_intra: true
|
141 |
+
|
142 |
+
Decoder: &id004 !new:speechbrain.lobes.models.dual_path.Decoder
|
143 |
+
in_channels: 256
|
144 |
+
out_channels: 1
|
145 |
+
kernel_size: 16
|
146 |
+
stride: 8
|
147 |
+
bias: false
|
148 |
+
|
149 |
+
optimizer: !name:torch.optim.Adam
|
150 |
+
lr: 0.00015
|
151 |
+
weight_decay: 0
|
152 |
+
|
153 |
+
loss: !name:speechbrain.nnet.losses.get_si_snr_with_pitwrapper
|
154 |
+
|
155 |
+
lr_scheduler: &id007 !new:speechbrain.nnet.schedulers.ReduceLROnPlateau
|
156 |
+
|
157 |
+
factor: 0.5
|
158 |
+
patience: 2
|
159 |
+
dont_halve_until_epoch: 85
|
160 |
+
|
161 |
+
epoch_counter: &id006 !new:speechbrain.utils.epoch_loop.EpochCounter
|
162 |
+
limit: 200
|
163 |
+
|
164 |
+
modules:
|
165 |
+
encoder: *id003
|
166 |
+
decoder: *id004
|
167 |
+
masknet: *id005
|
168 |
+
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
|
169 |
+
checkpoints_dir: results/sepformer-whamr-randomreverb-16k/1234/save
|
170 |
+
recoverables:
|
171 |
+
encoder: *id003
|
172 |
+
decoder: *id004
|
173 |
+
masknet: *id005
|
174 |
+
counter: *id006
|
175 |
+
lr_scheduler: *id007
|
176 |
+
train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
|
177 |
+
save_file: results/sepformer-whamr-randomreverb-16k/1234/train_log.txt
|
178 |
+
|
179 |
+
|
180 |
+
pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
|
181 |
+
loadables:
|
182 |
+
masknet: !ref <MaskNet>
|
183 |
+
encoder: !ref <Encoder>
|
184 |
+
decoder: !ref <Decoder>
|