Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,91 @@
|
|
1 |
-
---
|
2 |
-
license: llama3.2
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama3.2
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
base_model:
|
6 |
+
- meta-llama/Llama-3.2-1B-Instruct
|
7 |
+
pipeline_tag: text-generation
|
8 |
+
library_name: transformers
|
9 |
+
---
|
10 |
+
|
11 |
+
# Llama-3.2-1B-Instruct-ov-INT8
|
12 |
+
* Model creator: [Meta Llama](https://huggingface.co/meta-llama)
|
13 |
+
* Original model: [Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct)
|
14 |
+
|
15 |
+
## Description
|
16 |
+
This is [Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct) model converted to the [OpenVINO™ IR](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) (Intermediate Representation) format with weights compressed to INT8 by [NNCF](https://github.com/openvinotoolkit/nncf).
|
17 |
+
|
18 |
+
## Quantization Parameters
|
19 |
+
|
20 |
+
Weight compression was performed using `nncf.compress_weights` with the following parameters:
|
21 |
+
|
22 |
+
* mode: **int8_asym**
|
23 |
+
* ratio: **1**
|
24 |
+
* group_size: **128**
|
25 |
+
|
26 |
+
For more information on quantization, check the [OpenVINO model optimization guide](https://docs.openvino.ai/2024/openvino-workflow/model-optimization-guide/weight-compression.html).
|
27 |
+
|
28 |
+
|
29 |
+
## Compatibility
|
30 |
+
|
31 |
+
The provided OpenVINO™ IR model is compatible with:
|
32 |
+
|
33 |
+
* OpenVINO version 2024.4.0 and higher
|
34 |
+
* Optimum Intel 1.19.0 and higher
|
35 |
+
|
36 |
+
## Running Model Inference with [Optimum Intel](https://huggingface.co/docs/optimum/intel/index)
|
37 |
+
|
38 |
+
|
39 |
+
1. Install packages required for using [Optimum Intel](https://huggingface.co/docs/optimum/intel/index) integration with the OpenVINO backend:
|
40 |
+
|
41 |
+
```
|
42 |
+
pip install optimum[openvino]
|
43 |
+
```
|
44 |
+
|
45 |
+
2. Run model inference:
|
46 |
+
|
47 |
+
```
|
48 |
+
from transformers import AutoTokenizer
|
49 |
+
from optimum.intel.openvino import OVModelForCausalLM
|
50 |
+
|
51 |
+
model_id = "srang992/Llama-3.2-1B-Instruct-ov-INT8"
|
52 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
53 |
+
model = OVModelForCausalLM.from_pretrained(model_id)
|
54 |
+
|
55 |
+
inputs = tokenizer("What is OpenVINO?", return_tensors="pt")
|
56 |
+
|
57 |
+
outputs = model.generate(**inputs, max_length=200)
|
58 |
+
text = tokenizer.batch_decode(outputs)[0]
|
59 |
+
print(text)
|
60 |
+
```
|
61 |
+
|
62 |
+
For more examples and possible optimizations, refer to the [OpenVINO Large Language Model Inference Guide](https://docs.openvino.ai/2024/learn-openvino/llm_inference_guide.html).
|
63 |
+
|
64 |
+
## Running Model Inference with [OpenVINO GenAI](https://github.com/openvinotoolkit/openvino.genai)
|
65 |
+
|
66 |
+
1. Install packages required for using OpenVINO GenAI.
|
67 |
+
```
|
68 |
+
pip install openvino-genai huggingface_hub
|
69 |
+
```
|
70 |
+
|
71 |
+
2. Download model from HuggingFace Hub
|
72 |
+
|
73 |
+
```
|
74 |
+
import huggingface_hub as hf_hub
|
75 |
+
|
76 |
+
model_id = "srang992/Llama-3.2-1B-Instruct-ov-INT8"
|
77 |
+
model_path = "Llama-3.2-1B-Instruct-ov-INT8"
|
78 |
+
|
79 |
+
hf_hub.snapshot_download(model_id, local_dir=model_path)
|
80 |
+
|
81 |
+
```
|
82 |
+
|
83 |
+
3. Run model inference:
|
84 |
+
|
85 |
+
```
|
86 |
+
import openvino_genai as ov_genai
|
87 |
+
|
88 |
+
device = "CPU"
|
89 |
+
pipe = ov_genai.LLMPipeline(model_path, device)
|
90 |
+
print(pipe.generate("What is OpenVINO?", max_length=200))
|
91 |
+
```
|