---
base_model: intfloat/multilingual-e5-small
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:1936
- loss:OnlineContrastiveLoss
widget:
- source_sentence: What are the symptoms of COVID-19?
sentences:
- How to identify COVID-19?
- What is the process for booking a dinner table?
- It is not necessary to include specific fields in a financial report; nevertheless,
it is beneficial to add pertinent financial metrics to help investors gauge the
company's condition.
- source_sentence: How to apply for a scholarship?
sentences:
- Steps to apply for a scholarship
- Advantages of practicing meditation
- When `ignore_metadata` is set to `True`, all metadata and attributes are stripped
from the file prior to processing.
- source_sentence: How to write a novel?
sentences:
- How to write a short story?
- Who wrote 'Macbeth'?
- How to reset a phone
- source_sentence: You can wrap the project in `job.utils.data.JobLoader` and create
a collate function to collate the tasks into batches.
sentences:
- Steps to prepare a steak
- How many people live in Germany?
- You can use `job.utils.data.JobLoader` to encapsulate the project and define a
collate function to group the tasks into batches.
- source_sentence: What is the time now?
sentences:
- How to cook a chicken?
- Current time
- Guide to starting a small business
model-index:
- name: SentenceTransformer based on intfloat/multilingual-e5-small
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class dev
type: pair-class-dev
metrics:
- type: cosine_accuracy
value: 0.9212962962962963
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8385236263275146
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9403508771929825
name: Cosine F1
- type: cosine_f1_threshold
value: 0.8385236263275146
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9370629370629371
name: Cosine Precision
- type: cosine_recall
value: 0.9436619718309859
name: Cosine Recall
- type: cosine_ap
value: 0.9872231100578164
name: Cosine Ap
- type: dot_accuracy
value: 0.9212962962962963
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.8385236263275146
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.9403508771929825
name: Dot F1
- type: dot_f1_threshold
value: 0.8385236263275146
name: Dot F1 Threshold
- type: dot_precision
value: 0.9370629370629371
name: Dot Precision
- type: dot_recall
value: 0.9436619718309859
name: Dot Recall
- type: dot_ap
value: 0.9872231100578164
name: Dot Ap
- type: manhattan_accuracy
value: 0.9166666666666666
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 8.658426284790039
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.9391891891891893
name: Manhattan F1
- type: manhattan_f1_threshold
value: 9.594137191772461
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.9025974025974026
name: Manhattan Precision
- type: manhattan_recall
value: 0.9788732394366197
name: Manhattan Recall
- type: manhattan_ap
value: 0.987218816132896
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.9212962962962963
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.568278431892395
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.9403508771929825
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.568278431892395
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.9370629370629371
name: Euclidean Precision
- type: euclidean_recall
value: 0.9436619718309859
name: Euclidean Recall
- type: euclidean_ap
value: 0.9872231100578164
name: Euclidean Ap
- type: max_accuracy
value: 0.9212962962962963
name: Max Accuracy
- type: max_accuracy_threshold
value: 8.658426284790039
name: Max Accuracy Threshold
- type: max_f1
value: 0.9403508771929825
name: Max F1
- type: max_f1_threshold
value: 9.594137191772461
name: Max F1 Threshold
- type: max_precision
value: 0.9370629370629371
name: Max Precision
- type: max_recall
value: 0.9788732394366197
name: Max Recall
- type: max_ap
value: 0.9872231100578164
name: Max Ap
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class test
type: pair-class-test
metrics:
- type: cosine_accuracy
value: 0.9305555555555556
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.8569861650466919
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9484536082474226
name: Cosine F1
- type: cosine_f1_threshold
value: 0.8531842827796936
name: Cosine F1 Threshold
- type: cosine_precision
value: 0.9261744966442953
name: Cosine Precision
- type: cosine_recall
value: 0.971830985915493
name: Cosine Recall
- type: cosine_ap
value: 0.9898045699188958
name: Cosine Ap
- type: dot_accuracy
value: 0.9305555555555556
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.8569861650466919
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.9484536082474226
name: Dot F1
- type: dot_f1_threshold
value: 0.8531842231750488
name: Dot F1 Threshold
- type: dot_precision
value: 0.9261744966442953
name: Dot Precision
- type: dot_recall
value: 0.971830985915493
name: Dot Recall
- type: dot_ap
value: 0.9898045699188958
name: Dot Ap
- type: manhattan_accuracy
value: 0.9351851851851852
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 8.299823760986328
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.9517241379310345
name: Manhattan F1
- type: manhattan_f1_threshold
value: 8.299823760986328
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 0.9324324324324325
name: Manhattan Precision
- type: manhattan_recall
value: 0.971830985915493
name: Manhattan Recall
- type: manhattan_ap
value: 0.9895380844501982
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.9305555555555556
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.534814715385437
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.9484536082474226
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.5418605804443359
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 0.9261744966442953
name: Euclidean Precision
- type: euclidean_recall
value: 0.971830985915493
name: Euclidean Recall
- type: euclidean_ap
value: 0.9898045699188958
name: Euclidean Ap
- type: max_accuracy
value: 0.9351851851851852
name: Max Accuracy
- type: max_accuracy_threshold
value: 8.299823760986328
name: Max Accuracy Threshold
- type: max_f1
value: 0.9517241379310345
name: Max F1
- type: max_f1_threshold
value: 8.299823760986328
name: Max F1 Threshold
- type: max_precision
value: 0.9324324324324325
name: Max Precision
- type: max_recall
value: 0.971830985915493
name: Max Recall
- type: max_ap
value: 0.9898045699188958
name: Max Ap
---
# SentenceTransformer based on intfloat/multilingual-e5-small
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [intfloat/multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 384 tokens
- **Similarity Function:** Cosine Similarity
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/fine_tuned_model_11")
# Run inference
sentences = [
'What is the time now?',
'Current time',
'Guide to starting a small business',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Evaluation
### Metrics
#### Binary Classification
* Dataset: `pair-class-dev`
* Evaluated with [BinaryClassificationEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.9213 |
| cosine_accuracy_threshold | 0.8385 |
| cosine_f1 | 0.9404 |
| cosine_f1_threshold | 0.8385 |
| cosine_precision | 0.9371 |
| cosine_recall | 0.9437 |
| cosine_ap | 0.9872 |
| dot_accuracy | 0.9213 |
| dot_accuracy_threshold | 0.8385 |
| dot_f1 | 0.9404 |
| dot_f1_threshold | 0.8385 |
| dot_precision | 0.9371 |
| dot_recall | 0.9437 |
| dot_ap | 0.9872 |
| manhattan_accuracy | 0.9167 |
| manhattan_accuracy_threshold | 8.6584 |
| manhattan_f1 | 0.9392 |
| manhattan_f1_threshold | 9.5941 |
| manhattan_precision | 0.9026 |
| manhattan_recall | 0.9789 |
| manhattan_ap | 0.9872 |
| euclidean_accuracy | 0.9213 |
| euclidean_accuracy_threshold | 0.5683 |
| euclidean_f1 | 0.9404 |
| euclidean_f1_threshold | 0.5683 |
| euclidean_precision | 0.9371 |
| euclidean_recall | 0.9437 |
| euclidean_ap | 0.9872 |
| max_accuracy | 0.9213 |
| max_accuracy_threshold | 8.6584 |
| max_f1 | 0.9404 |
| max_f1_threshold | 9.5941 |
| max_precision | 0.9371 |
| max_recall | 0.9789 |
| **max_ap** | **0.9872** |
#### Binary Classification
* Dataset: `pair-class-test`
* Evaluated with [BinaryClassificationEvaluator
](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.BinaryClassificationEvaluator)
| Metric | Value |
|:-----------------------------|:-----------|
| cosine_accuracy | 0.9306 |
| cosine_accuracy_threshold | 0.857 |
| cosine_f1 | 0.9485 |
| cosine_f1_threshold | 0.8532 |
| cosine_precision | 0.9262 |
| cosine_recall | 0.9718 |
| cosine_ap | 0.9898 |
| dot_accuracy | 0.9306 |
| dot_accuracy_threshold | 0.857 |
| dot_f1 | 0.9485 |
| dot_f1_threshold | 0.8532 |
| dot_precision | 0.9262 |
| dot_recall | 0.9718 |
| dot_ap | 0.9898 |
| manhattan_accuracy | 0.9352 |
| manhattan_accuracy_threshold | 8.2998 |
| manhattan_f1 | 0.9517 |
| manhattan_f1_threshold | 8.2998 |
| manhattan_precision | 0.9324 |
| manhattan_recall | 0.9718 |
| manhattan_ap | 0.9895 |
| euclidean_accuracy | 0.9306 |
| euclidean_accuracy_threshold | 0.5348 |
| euclidean_f1 | 0.9485 |
| euclidean_f1_threshold | 0.5419 |
| euclidean_precision | 0.9262 |
| euclidean_recall | 0.9718 |
| euclidean_ap | 0.9898 |
| max_accuracy | 0.9352 |
| max_accuracy_threshold | 8.2998 |
| max_f1 | 0.9517 |
| max_f1_threshold | 8.2998 |
| max_precision | 0.9324 |
| max_recall | 0.9718 |
| **max_ap** | **0.9898** |
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 1,936 training samples
* Columns: label
, sentence1
, and sentence2
* Approximate statistics based on the first 1000 samples:
| | label | sentence1 | sentence2 |
|:--------|:------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | int | string | string |
| details |
1
| How do I apply for a credit card?
| How do I get a credit card?
|
| 1
| What is the function of a learning rate scheduler?
| How does a learning rate scheduler optimize training?
|
| 0
| What is the speed of a rocket?
| What is the speed of a jet plane?
|
* Loss: [OnlineContrastiveLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
### Evaluation Dataset
#### Unnamed Dataset
* Size: 216 evaluation samples
* Columns: label
, sentence1
, and sentence2
* Approximate statistics based on the first 216 samples:
| | label | sentence1 | sentence2 |
|:--------|:------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | int | string | string |
| details | 0
| What is the freezing point of ethanol?
| What is the boiling point of ethanol?
|
| 0
| Healthy habits
| Unhealthy habits
|
| 0
| What is the difference between omnivores and herbivores?
| What is the difference between omnivores, carnivores, and herbivores?
|
* Loss: [OnlineContrastiveLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#onlinecontrastiveloss)
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 32
- `per_device_eval_batch_size`: 32
- `gradient_accumulation_steps`: 2
- `num_train_epochs`: 4
- `warmup_ratio`: 0.1
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters