End of training
Browse files- README.md +63 -180
- config.json +88 -0
- model.safetensors +3 -0
- training_args.bin +3 -0
README.md
CHANGED
@@ -1,199 +1,82 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
|
|
7 |
|
8 |
-
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
|
|
11 |
|
12 |
-
|
13 |
|
14 |
-
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
19 |
|
20 |
-
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
|
28 |
-
|
29 |
|
30 |
-
|
31 |
|
32 |
-
|
33 |
-
-
|
34 |
-
-
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
-
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
-
### Direct Use
|
41 |
|
42 |
-
|
43 |
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: other
|
3 |
+
base_model: sayeed99/segformer-b3-fashion
|
4 |
+
tags:
|
5 |
+
- vision
|
6 |
+
- image-segmentation
|
7 |
+
- generated_from_trainer
|
8 |
+
model-index:
|
9 |
+
- name: segformer-b3-fashion-finetuned-polo-segments-aug-07-v1.2
|
10 |
+
results: []
|
11 |
---
|
12 |
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
|
16 |
+
# segformer-b3-fashion-finetuned-polo-segments-aug-07-v1.2
|
17 |
|
18 |
+
This model is a fine-tuned version of [sayeed99/segformer-b3-fashion](https://huggingface.co/sayeed99/segformer-b3-fashion) on the sshk/polo-badges-segmentation dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.0582
|
21 |
+
- Mean Iou: 0.8583
|
22 |
+
- Mean Accuracy: 0.9104
|
23 |
+
- Overall Accuracy: 0.9803
|
24 |
+
- Accuracy Unlabeled: nan
|
25 |
+
- Accuracy Collar: 0.8741
|
26 |
+
- Accuracy Polo: 0.9786
|
27 |
+
- Accuracy Lines-cuff: 0.7185
|
28 |
+
- Accuracy Lines-chest: 0.9188
|
29 |
+
- Accuracy Human: 0.9805
|
30 |
+
- Accuracy Background: 0.9920
|
31 |
+
- Iou Unlabeled: nan
|
32 |
+
- Iou Collar: 0.8111
|
33 |
+
- Iou Polo: 0.9580
|
34 |
+
- Iou Lines-cuff: 0.6290
|
35 |
+
- Iou Lines-chest: 0.8101
|
36 |
+
- Iou Human: 0.9553
|
37 |
+
- Iou Background: 0.9863
|
38 |
|
39 |
+
## Model description
|
40 |
|
41 |
+
More information needed
|
42 |
|
43 |
+
## Intended uses & limitations
|
44 |
|
45 |
+
More information needed
|
46 |
|
47 |
+
## Training and evaluation data
|
48 |
|
49 |
+
More information needed
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
|
51 |
+
## Training procedure
|
52 |
|
53 |
+
### Training hyperparameters
|
54 |
|
55 |
+
The following hyperparameters were used during training:
|
56 |
+
- learning_rate: 6e-05
|
57 |
+
- train_batch_size: 8
|
58 |
+
- eval_batch_size: 8
|
59 |
+
- seed: 42
|
60 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
+
- lr_scheduler_type: linear
|
62 |
+
- num_epochs: 30
|
63 |
|
64 |
+
### Training results
|
65 |
|
66 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Collar | Accuracy Polo | Accuracy Lines-cuff | Accuracy Lines-chest | Accuracy Human | Accuracy Background | Iou Unlabeled | Iou Collar | Iou Polo | Iou Lines-cuff | Iou Lines-chest | Iou Human | Iou Background |
|
67 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:---------------:|:-------------:|:-------------------:|:--------------------:|:--------------:|:-------------------:|:-------------:|:----------:|:--------:|:--------------:|:---------------:|:---------:|:--------------:|
|
68 |
+
| 0.1564 | 4.0 | 20 | 0.1474 | 0.5073 | 0.6210 | 0.9633 | nan | 0.7561 | 0.9797 | 0.0183 | 0.0138 | 0.9829 | 0.9750 | 0.0 | 0.6873 | 0.9282 | 0.0182 | 0.0131 | 0.9332 | 0.9714 |
|
69 |
+
| 0.0912 | 8.0 | 40 | 0.0812 | 0.7332 | 0.7637 | 0.9751 | nan | 0.8012 | 0.9798 | 0.1221 | 0.7058 | 0.9886 | 0.9847 | nan | 0.7652 | 0.9512 | 0.1220 | 0.6314 | 0.9483 | 0.9811 |
|
70 |
+
| 0.0724 | 12.0 | 60 | 0.0693 | 0.8345 | 0.8765 | 0.9791 | nan | 0.8651 | 0.9817 | 0.5794 | 0.8633 | 0.9810 | 0.9888 | nan | 0.8025 | 0.9570 | 0.5407 | 0.7688 | 0.9537 | 0.9844 |
|
71 |
+
| 0.0609 | 16.0 | 80 | 0.0633 | 0.8506 | 0.9022 | 0.9796 | nan | 0.8697 | 0.9771 | 0.6806 | 0.9123 | 0.9826 | 0.9907 | nan | 0.8093 | 0.9573 | 0.6053 | 0.7921 | 0.9541 | 0.9853 |
|
72 |
+
| 0.0602 | 20.0 | 100 | 0.0629 | 0.8493 | 0.8960 | 0.9794 | nan | 0.8576 | 0.9789 | 0.6686 | 0.8987 | 0.9818 | 0.9904 | nan | 0.8024 | 0.9569 | 0.6004 | 0.7974 | 0.9532 | 0.9855 |
|
73 |
+
| 0.0536 | 24.0 | 120 | 0.0588 | 0.8556 | 0.9083 | 0.9801 | nan | 0.8709 | 0.9788 | 0.7104 | 0.9172 | 0.9823 | 0.9902 | nan | 0.8090 | 0.9581 | 0.6244 | 0.8011 | 0.9552 | 0.9856 |
|
74 |
+
| 0.0459 | 28.0 | 140 | 0.0582 | 0.8583 | 0.9104 | 0.9803 | nan | 0.8741 | 0.9786 | 0.7185 | 0.9188 | 0.9805 | 0.9920 | nan | 0.8111 | 0.9580 | 0.6290 | 0.8101 | 0.9553 | 0.9863 |
|
75 |
|
|
|
76 |
|
77 |
+
### Framework versions
|
78 |
|
79 |
+
- Transformers 4.44.0
|
80 |
+
- Pytorch 2.4.0+cu121
|
81 |
+
- Datasets 2.20.0
|
82 |
+
- Tokenizers 0.19.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "sayeed99/segformer-b3-fashion",
|
3 |
+
"architectures": [
|
4 |
+
"SegformerForSemanticSegmentation"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"classifier_dropout_prob": 0.1,
|
8 |
+
"decoder_hidden_size": 768,
|
9 |
+
"depths": [
|
10 |
+
3,
|
11 |
+
4,
|
12 |
+
18,
|
13 |
+
3
|
14 |
+
],
|
15 |
+
"downsampling_rates": [
|
16 |
+
1,
|
17 |
+
4,
|
18 |
+
8,
|
19 |
+
16
|
20 |
+
],
|
21 |
+
"drop_path_rate": 0.1,
|
22 |
+
"hidden_act": "gelu",
|
23 |
+
"hidden_dropout_prob": 0.0,
|
24 |
+
"hidden_sizes": [
|
25 |
+
64,
|
26 |
+
128,
|
27 |
+
320,
|
28 |
+
512
|
29 |
+
],
|
30 |
+
"id2label": {
|
31 |
+
"0": "unlabeled",
|
32 |
+
"1": "collar",
|
33 |
+
"2": "polo",
|
34 |
+
"3": "lines-cuff",
|
35 |
+
"4": "lines-chest",
|
36 |
+
"5": "human",
|
37 |
+
"6": "background"
|
38 |
+
},
|
39 |
+
"image_size": 224,
|
40 |
+
"initializer_range": 0.02,
|
41 |
+
"label2id": {
|
42 |
+
"background": 6,
|
43 |
+
"collar": 1,
|
44 |
+
"human": 5,
|
45 |
+
"lines-chest": 4,
|
46 |
+
"lines-cuff": 3,
|
47 |
+
"polo": 2,
|
48 |
+
"unlabeled": 0
|
49 |
+
},
|
50 |
+
"layer_norm_eps": 1e-06,
|
51 |
+
"mlp_ratios": [
|
52 |
+
4,
|
53 |
+
4,
|
54 |
+
4,
|
55 |
+
4
|
56 |
+
],
|
57 |
+
"model_type": "segformer",
|
58 |
+
"num_attention_heads": [
|
59 |
+
1,
|
60 |
+
2,
|
61 |
+
5,
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"num_channels": 3,
|
65 |
+
"num_encoder_blocks": 4,
|
66 |
+
"patch_sizes": [
|
67 |
+
7,
|
68 |
+
3,
|
69 |
+
3,
|
70 |
+
3
|
71 |
+
],
|
72 |
+
"reshape_last_stage": true,
|
73 |
+
"semantic_loss_ignore_index": 255,
|
74 |
+
"sr_ratios": [
|
75 |
+
8,
|
76 |
+
4,
|
77 |
+
2,
|
78 |
+
1
|
79 |
+
],
|
80 |
+
"strides": [
|
81 |
+
4,
|
82 |
+
2,
|
83 |
+
2,
|
84 |
+
2
|
85 |
+
],
|
86 |
+
"torch_dtype": "float32",
|
87 |
+
"transformers_version": "4.44.0"
|
88 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91ec1e7cd185fdbcc688a5f1b12829720bd4bebc687734c2108492fafd6a61c0
|
3 |
+
size 188995156
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:08716ca9ba65cf09a0539aa51c3a4e15292c9a05b907a25dcf19e57a765353bf
|
3 |
+
size 5304
|