sshk commited on
Commit
b768453
1 Parent(s): aad2ffc

End of training

Browse files
Files changed (4) hide show
  1. README.md +63 -180
  2. config.json +88 -0
  3. model.safetensors +3 -0
  4. training_args.bin +3 -0
README.md CHANGED
@@ -1,199 +1,82 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
 
 
 
 
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
 
 
 
 
 
 
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: other
3
+ base_model: sayeed99/segformer-b3-fashion
4
+ tags:
5
+ - vision
6
+ - image-segmentation
7
+ - generated_from_trainer
8
+ model-index:
9
+ - name: segformer-b3-fashion-finetuned-polo-segments-aug-07-v1.2
10
+ results: []
11
  ---
12
 
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
 
16
+ # segformer-b3-fashion-finetuned-polo-segments-aug-07-v1.2
17
 
18
+ This model is a fine-tuned version of [sayeed99/segformer-b3-fashion](https://huggingface.co/sayeed99/segformer-b3-fashion) on the sshk/polo-badges-segmentation dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.0582
21
+ - Mean Iou: 0.8583
22
+ - Mean Accuracy: 0.9104
23
+ - Overall Accuracy: 0.9803
24
+ - Accuracy Unlabeled: nan
25
+ - Accuracy Collar: 0.8741
26
+ - Accuracy Polo: 0.9786
27
+ - Accuracy Lines-cuff: 0.7185
28
+ - Accuracy Lines-chest: 0.9188
29
+ - Accuracy Human: 0.9805
30
+ - Accuracy Background: 0.9920
31
+ - Iou Unlabeled: nan
32
+ - Iou Collar: 0.8111
33
+ - Iou Polo: 0.9580
34
+ - Iou Lines-cuff: 0.6290
35
+ - Iou Lines-chest: 0.8101
36
+ - Iou Human: 0.9553
37
+ - Iou Background: 0.9863
38
 
39
+ ## Model description
40
 
41
+ More information needed
42
 
43
+ ## Intended uses & limitations
44
 
45
+ More information needed
46
 
47
+ ## Training and evaluation data
48
 
49
+ More information needed
 
 
 
 
 
 
50
 
51
+ ## Training procedure
52
 
53
+ ### Training hyperparameters
54
 
55
+ The following hyperparameters were used during training:
56
+ - learning_rate: 6e-05
57
+ - train_batch_size: 8
58
+ - eval_batch_size: 8
59
+ - seed: 42
60
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
61
+ - lr_scheduler_type: linear
62
+ - num_epochs: 30
63
 
64
+ ### Training results
65
 
66
+ | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Collar | Accuracy Polo | Accuracy Lines-cuff | Accuracy Lines-chest | Accuracy Human | Accuracy Background | Iou Unlabeled | Iou Collar | Iou Polo | Iou Lines-cuff | Iou Lines-chest | Iou Human | Iou Background |
67
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:---------------:|:-------------:|:-------------------:|:--------------------:|:--------------:|:-------------------:|:-------------:|:----------:|:--------:|:--------------:|:---------------:|:---------:|:--------------:|
68
+ | 0.1564 | 4.0 | 20 | 0.1474 | 0.5073 | 0.6210 | 0.9633 | nan | 0.7561 | 0.9797 | 0.0183 | 0.0138 | 0.9829 | 0.9750 | 0.0 | 0.6873 | 0.9282 | 0.0182 | 0.0131 | 0.9332 | 0.9714 |
69
+ | 0.0912 | 8.0 | 40 | 0.0812 | 0.7332 | 0.7637 | 0.9751 | nan | 0.8012 | 0.9798 | 0.1221 | 0.7058 | 0.9886 | 0.9847 | nan | 0.7652 | 0.9512 | 0.1220 | 0.6314 | 0.9483 | 0.9811 |
70
+ | 0.0724 | 12.0 | 60 | 0.0693 | 0.8345 | 0.8765 | 0.9791 | nan | 0.8651 | 0.9817 | 0.5794 | 0.8633 | 0.9810 | 0.9888 | nan | 0.8025 | 0.9570 | 0.5407 | 0.7688 | 0.9537 | 0.9844 |
71
+ | 0.0609 | 16.0 | 80 | 0.0633 | 0.8506 | 0.9022 | 0.9796 | nan | 0.8697 | 0.9771 | 0.6806 | 0.9123 | 0.9826 | 0.9907 | nan | 0.8093 | 0.9573 | 0.6053 | 0.7921 | 0.9541 | 0.9853 |
72
+ | 0.0602 | 20.0 | 100 | 0.0629 | 0.8493 | 0.8960 | 0.9794 | nan | 0.8576 | 0.9789 | 0.6686 | 0.8987 | 0.9818 | 0.9904 | nan | 0.8024 | 0.9569 | 0.6004 | 0.7974 | 0.9532 | 0.9855 |
73
+ | 0.0536 | 24.0 | 120 | 0.0588 | 0.8556 | 0.9083 | 0.9801 | nan | 0.8709 | 0.9788 | 0.7104 | 0.9172 | 0.9823 | 0.9902 | nan | 0.8090 | 0.9581 | 0.6244 | 0.8011 | 0.9552 | 0.9856 |
74
+ | 0.0459 | 28.0 | 140 | 0.0582 | 0.8583 | 0.9104 | 0.9803 | nan | 0.8741 | 0.9786 | 0.7185 | 0.9188 | 0.9805 | 0.9920 | nan | 0.8111 | 0.9580 | 0.6290 | 0.8101 | 0.9553 | 0.9863 |
75
 
 
76
 
77
+ ### Framework versions
78
 
79
+ - Transformers 4.44.0
80
+ - Pytorch 2.4.0+cu121
81
+ - Datasets 2.20.0
82
+ - Tokenizers 0.19.1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sayeed99/segformer-b3-fashion",
3
+ "architectures": [
4
+ "SegformerForSemanticSegmentation"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "classifier_dropout_prob": 0.1,
8
+ "decoder_hidden_size": 768,
9
+ "depths": [
10
+ 3,
11
+ 4,
12
+ 18,
13
+ 3
14
+ ],
15
+ "downsampling_rates": [
16
+ 1,
17
+ 4,
18
+ 8,
19
+ 16
20
+ ],
21
+ "drop_path_rate": 0.1,
22
+ "hidden_act": "gelu",
23
+ "hidden_dropout_prob": 0.0,
24
+ "hidden_sizes": [
25
+ 64,
26
+ 128,
27
+ 320,
28
+ 512
29
+ ],
30
+ "id2label": {
31
+ "0": "unlabeled",
32
+ "1": "collar",
33
+ "2": "polo",
34
+ "3": "lines-cuff",
35
+ "4": "lines-chest",
36
+ "5": "human",
37
+ "6": "background"
38
+ },
39
+ "image_size": 224,
40
+ "initializer_range": 0.02,
41
+ "label2id": {
42
+ "background": 6,
43
+ "collar": 1,
44
+ "human": 5,
45
+ "lines-chest": 4,
46
+ "lines-cuff": 3,
47
+ "polo": 2,
48
+ "unlabeled": 0
49
+ },
50
+ "layer_norm_eps": 1e-06,
51
+ "mlp_ratios": [
52
+ 4,
53
+ 4,
54
+ 4,
55
+ 4
56
+ ],
57
+ "model_type": "segformer",
58
+ "num_attention_heads": [
59
+ 1,
60
+ 2,
61
+ 5,
62
+ 8
63
+ ],
64
+ "num_channels": 3,
65
+ "num_encoder_blocks": 4,
66
+ "patch_sizes": [
67
+ 7,
68
+ 3,
69
+ 3,
70
+ 3
71
+ ],
72
+ "reshape_last_stage": true,
73
+ "semantic_loss_ignore_index": 255,
74
+ "sr_ratios": [
75
+ 8,
76
+ 4,
77
+ 2,
78
+ 1
79
+ ],
80
+ "strides": [
81
+ 4,
82
+ 2,
83
+ 2,
84
+ 2
85
+ ],
86
+ "torch_dtype": "float32",
87
+ "transformers_version": "4.44.0"
88
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:91ec1e7cd185fdbcc688a5f1b12829720bd4bebc687734c2108492fafd6a61c0
3
+ size 188995156
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08716ca9ba65cf09a0539aa51c3a4e15292c9a05b907a25dcf19e57a765353bf
3
+ size 5304