reciprocate commited on
Commit
03b5bc9
1 Parent(s): b5acbe8

update plot with new naming & reformat the code

Browse files
Files changed (1) hide show
  1. README.md +15 -10
README.md CHANGED
@@ -42,19 +42,23 @@ from transformers import AutoModelForCausalLM, AutoTokenizer
42
 
43
  tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-zephyr-3b')
44
  model = AutoModelForCausalLM.from_pretrained(
45
- 'stabilityai/stablelm-zephyr-3b',
46
- trust_remote_code=True,
47
- device_map="auto"
48
  )
49
 
50
  prompt = [{'role': 'user', 'content': 'List 3 synonyms for the word "tiny"'}]
51
- inputs = tokenizer.apply_chat_template(prompt, add_generation_prompt=True, return_tensors='pt')
 
 
 
 
52
 
53
  tokens = model.generate(
54
- inputs.to(model.device),
55
- max_new_tokens=1024,
56
- temperature=0.8,
57
- do_sample=True
58
  )
59
 
60
  print(tokenizer.decode(tokens[0], skip_special_tokens=False))
@@ -87,14 +91,15 @@ The dataset is comprised of a mixture of open datasets large-scale datasets avai
87
 
88
  ## Performance
89
 
90
- ### MT Bench and Alpaca Bench
91
 
92
- <img src="https://cdn-uploads.huggingface.co/production/uploads/6310474ca119d49bc1eb0d80/LXOYt_ulqXSneMENUjI1O.png" alt="mt_bench_plot" width="600"/>
93
 
94
  | Model | Size | Alignment | MT-Bench (score) | AlpacaEval (win rate %) |
95
  |-------------|-----|----|---------------|--------------|
96
  | **StableLM Zephyr 3B** 🪁 | 3B | DPO | 6.64 | 76.00 |
97
  | Stable Zephyr (SFT only) | 3B | SFT | 6.04 | 71.15 |
 
98
  | MPT-Chat | 7B |dSFT |5.42| -|
99
  | Xwin-LMv0.1 | 7B| dPPO| 6.19| 87.83|
100
  | Mistral-Instructv0.1 | 7B| - | 6.84 |-|
 
42
 
43
  tokenizer = AutoTokenizer.from_pretrained('stabilityai/stablelm-zephyr-3b')
44
  model = AutoModelForCausalLM.from_pretrained(
45
+ 'stabilityai/stablelm-zephyr-3b',
46
+ trust_remote_code=True,
47
+ device_map="auto"
48
  )
49
 
50
  prompt = [{'role': 'user', 'content': 'List 3 synonyms for the word "tiny"'}]
51
+ inputs = tokenizer.apply_chat_template(
52
+ prompt,
53
+ add_generation_prompt=True,
54
+ return_tensors='pt'
55
+ )
56
 
57
  tokens = model.generate(
58
+ inputs.to(model.device),
59
+ max_new_tokens=1024,
60
+ temperature=0.8,
61
+ do_sample=True
62
  )
63
 
64
  print(tokenizer.decode(tokens[0], skip_special_tokens=False))
 
91
 
92
  ## Performance
93
 
94
+ ### MT-Bench and Alpaca Bench
95
 
96
+ <img src="https://cdn-uploads.huggingface.co/production/uploads/6310474ca119d49bc1eb0d80/jwpbBHzdCkHm0rMvPUVxC.png" alt="mt_bench_plot" width="600"/>
97
 
98
  | Model | Size | Alignment | MT-Bench (score) | AlpacaEval (win rate %) |
99
  |-------------|-----|----|---------------|--------------|
100
  | **StableLM Zephyr 3B** 🪁 | 3B | DPO | 6.64 | 76.00 |
101
  | Stable Zephyr (SFT only) | 3B | SFT | 6.04 | 71.15 |
102
+ | Capybara v1.9 | 3B | dSFT | 5.94 | - |
103
  | MPT-Chat | 7B |dSFT |5.42| -|
104
  | Xwin-LMv0.1 | 7B| dPPO| 6.19| 87.83|
105
  | Mistral-Instructv0.1 | 7B| - | 6.84 |-|